RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202

B. Sc ADMISSION TEST - 2023

MATHEMATICS

Date : 17/07/2023

Full Marks : 50

Time : 11:00am - 12 noon

Instructions for the candidates

- Answer all questions.
- Each question has 4 options out of which only one is correct.
- Tick (\checkmark) the correct option on OMR SHEET.
- The tick (\checkmark) must be very clear if it is smudgy or not clear, no marks will be awarded.
- Each correct answer carries **2** marks and for each incorrect answer **1** mark will be deducted.
- Unanswered questions will not be awarded.
- Multiple answers will be considered as wrong answer.
- Calculator is **not** allowed.
- 1. $\int \frac{dx}{x(x^4+1)}$ is equal to (c is arbitrary constant) (a) $\frac{1}{4}\ln(\frac{x^4+1}{x^4}) + c$ (b) $\frac{1}{4}\ln(\frac{x^4}{x^4+1}) + c$ (c) $\frac{1}{4}\ln(x^4+1) + c$ (d) $\frac{1}{4}\ln(x^4) + c$.
- 2. The coefficient of the middle term in the binomial expansion of $(1 + \alpha x)^4$ and $(1 \alpha x)^6$ is the same if α equals to

(a)
$$\frac{-3}{10}$$
 (b) $\frac{10}{3}$ (c) $\frac{-5}{3}$ (d) $\frac{3}{5}$

- 3. If $\omega \neq 1$ is a complex cube root of unity and $(1 + \omega^4)^n = (1 + \omega^8)^n$, then the least positive integral value of n is
 - (a) 2 (b) 3 (c) 6 (d) 12
- 4. Suppose a₁, a₂,... are in A. P. If a₈ : a₅ = 3 : 2 then a₁₇ : a₂₃ is
 (a) 1:2
 (b) 3:4
 (c) 4:11
 (d) 8:11
- 5. If the sum of the coefficients in the expansion of $(x + y)^n$ is 2048, then the greatest coefficient in the expansion is
 - (a) ${}^{10}C_6$ (b) ${}^{11}C_6$ (c) ${}^{10}C_7$ (d) ${}^{12}C_6$
- 6. Which of the following is true for $f(x) = |\sin x + 1|$ in the interval $(-\pi, 0)$
 - (a) f attains both its maxima and minima,
 - (b) f does not attain its maxima,
 - (c) f does not attain its minima,
 - (d) f has neither maxima nor minima.

7. If $\tan(1+y) = x - 1$ for $x \in \mathbb{R}$, then $\frac{dy}{dx} =$

$$(a)\frac{1}{(x-1)^2-1}, \qquad (b)\frac{1}{(x+2)^2-2(3x+1)}, \qquad (c)\frac{1}{x^2+2x+2}, \qquad (d)-\frac{(x-1)^2}{1+(x-1)^2}$$

- 8. Let $f(x) \neq g(x)$ for all positive real number x. If f and g are differentiable everywhere and f'(1) = g'(1) then which of the following statements are true for the curves y = f(x) and y = g(x).
 - (a) Both the curves have same tangent at x = 1.
 - (b) The tangents of the above curves intersect at x = 1.
 - (c) The tangents of the above curves at x = 1 may be different but parallel to each other.
 - (d) Either one or both the curves may not have any tangents at x = 1.
- 9. Three people each speak the truth three out of four times. There is a fair coin flip that they all see. They all say it's a Tail. What's the probability that it is actually a Tail? (a) $\frac{1}{28}$ (b) $\frac{3}{64}$ (c) $\frac{27}{64}$ (d) $\frac{27}{28}$
- 10. Three dice are rolled together. What is the probability of getting at least one '4'?
 - (a) $\frac{1}{36}$ (b) $\frac{11}{36}$ (c) $\frac{125}{216}$ (d) $\frac{91}{216}$
- 11. How many numbers are there between 99 and 1000, having at least one of their digits '8'?
 - (a) 642 (b) 201 (c) 991 (d) 252

12. $\binom{50}{0} \cdot \binom{50}{1} + \binom{50}{1} \cdot \binom{50}{2} + \ldots + \binom{50}{49} \cdot \binom{50}{50} = ?$ (where $\binom{m}{n} = {}^{m}C_{n}$)

- (a) $\binom{50}{25}$ (b) $\binom{100}{50}$ (c) $\binom{50}{24}$ (d) $\binom{100}{49}$
- 13. The locus of the mid-points of the focal chords of the parabola $y^2 = 4px \ (p > 0)$ is (a) $y^2 = 2p(x+p)$ (b) $y^2 = 4p(x+p)$ (c) $y^2 = 2p(x-p)$ (d) $y^2 = 4p(x-p)$
- 14. The distance of the point (7, 1) from the line 3x + y = 4 measured parallel to the line 3x-5y+2=0 is
 - (a) $\sqrt{17}$ (b) $2\sqrt{17}$ (c) $\sqrt{34}$ (d) $2\sqrt{34}$
- 15. Let a given line L_1 intersects the x and y axes at P and Q respectively. Let another line L_2 , perpendicular to L_1 , cuts the x and y axes at R and S respectively. Then the locus of the point of intersection of the lines PS and QR is
 - (a) a circle(b) an ellipse(c) a parabola(d) a hyperbola
- 16. The length of the shortest distance between the lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ is
 - (a) $\sqrt{29}$ (b) $2\sqrt{29}$ (c) $\sqrt{58}$ (d) $2\sqrt{58}$

- 17. Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors, no two of which are collinear. If the vector $\vec{a} + 2\vec{b}$ is collinear with \vec{c} , and $\vec{b} + 3\vec{c}$ is collinear with \vec{a} , then $\vec{a} + 2\vec{b} + 6\vec{c}$ is equal to (λ being some non-zero scalar)
 - (a) $\lambda \vec{a}$ (b) $\lambda \vec{b}$ (c) $\lambda \vec{c}$ (d) $\vec{0}$
- 18. Suppose n is the number of elements in P(X), power set of X. If $60 \le n < 102$, then the number of elements in $X \times X$ is

- 19. Let $\mathbb{N} = \{1, 2, 3, ...\}$ and $A = \mathbb{N} \{1, 2, 3\}$. Then
 - (a) there is no bijection from \mathbb{N} to A.
 - (b) there is a bijection from \mathbb{N} to A.
 - (c) there are exactly three bijections from \mathbb{N} to A.
 - (d) any injective map from \mathbb{N} to A is a bijection.

20. Let A = {1,2,3,4}, B = {5,6,7,8}. The number of surjective maps from A to B is
(a) 8
(b) 16
(c) 24
(d) 32

- 21. Suppose $X = \{1, 2, 3\}, \rho = \{(1, 1), (2, 2)\}$. Then
 - (a) ρ is reflexive.
 - (b) ρ is reflexive but not symmetric.
 - (c) ρ is symmetric but not reflexive.
 - (d) ρ is symmetric but not transitive.

22. Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = |x| + |x - 1|, for each $x \in \mathbb{R}$. Then f is

- (a) continuous.
- (b) continuous everywhere except '0'.
- (c) continuous everywhere except '0' and '1'.

(b) $2c^2$

(d) continuous only at '0' and '1'.

23. If
$$\tan A = \frac{2}{3}$$
 and $\tan B = \frac{3}{2}$, then A + B is
(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$

24.
$$\det(c \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix})$$
 is **(a)** $2c$

25.
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$
 is
(a) symmetric (b) nilpotent (c) singular (d) invertible.

- - - - × - - - - -

(c) -2c

(d) $-2c^2$.