RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202

P.G. ADMISSION TEST - 2017

MATHEMATICS
Date: 05-07-2017
Full Marks : 50
Time: 11.00 a.m. -1.00 p.m

Instructions for the candidate

Write the answer key(s) in the appropriate space provided. Each question carries 2 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. A few questions are given with more than one correct answer keys, the candidate has to write each correct answer keys - otherwise it would be treated as a wrong answer.

Name of the student: \qquad
Application No. : \qquad

Signature of the invigilator : \qquad

1. Let A be a 3×3 matrix and $A^{2}-A=0$. Then
a) A must be a null matrix
b) A must be an identity matrix
c) Rank of A is 0 or 1
d) A is diagonalizable

Ans. \square
2. The minimal polynomial of $\left(\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5\end{array}\right)$ is
a) $x-2$
b) $(x-2)(x-5)$
c) $(x-2)^{2}(x-5)$
d) $(x-2)^{3}(x-5)$

Ans. \square
3. A is an upper triangular matrix with all diagonal entries zero. Then $\mathrm{I}+\mathrm{A}$ must be
a) Invertible
b) Idempotent
c) Singular
d) Nilpotent

Ans. \square
4. Let f and g be two real-valued continuous functions defined on $[0,1]$ such that $\sup _{x \in[0,1]} f(x)=\sup _{x \in[0,1]} g(x)$. Then
a) $\exists x \in[0,1]$ such that $f(x)=g(x)$
b) $\exists x \in[0,1]$ such that $f(x)=g(x)-2$
c) $\exists x \in[0,1]$ such that $f(x)=g(x)=\sup _{t \in[0,1]} f(t)$
d) $\exists \mathrm{x} \in[0,1]$ such that $\mathrm{f}(\mathrm{x})^{2}+2 \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})^{2}+2 \mathrm{~g}(\mathrm{x})$

Ans. \square
5. Let $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ has IVP and for all $\mathrm{c} \in \mathbb{R}, \mathrm{f}^{-1}(\mathrm{c})$ is closed. Then (where IVP is intermediate value property)
a) f is continuous
b) f is discontinuous
c) f is differentiable
d) none of these

Ans. \square
6. Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a real sequence such that $\mathrm{x}_{1}=1, \mathrm{x}_{2}=2, \mathrm{x}_{\mathrm{n}+2}=\frac{\mathrm{x}_{\mathrm{n}+1}+1}{\mathrm{x}_{\mathrm{n}}} \forall \mathrm{n} \in \mathbb{N}$. Then x_{122} equals
a) 1
b) 2
c) 3
d) none of these

Ans.

7. Let $\left\{f_{n}\right\}$ be a sequence of non-decreasing real-valued functions from $[0,1]$ to $[0,1]$. If $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ pointwise and f is continuous then
a) $f_{n} \rightarrow f$ uniformly
b) $f_{n} \rightarrow f$ but not uniformly
c) $\mathrm{f}_{\mathrm{n}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x}) \forall \mathrm{x} \in[0,1]$
d) none of these

Ans.
8. Let $f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}},(x, y) \in \mathbb{R}^{2}$. Then
a) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)$ does not exist
b) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)$ exists
c) Both $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$ and $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$ exist and are equal
d) $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)$

Ans.
9. Let (X, d) be a metric space such that each sequence in X has a Cauchy subsequence. Then
a) X is bounded
b) X is complete
c) X is compact
d) X has at least one limit point
Ans. \square
10. Let G be a noncommutative group of order 10 . Then G has
a) No element of order 5
b) Only one element of order 5
c) 4 elements of order 5
d) 7 elements of order 5

Ans. \square
11. Let n be a positive integer with 24 positive divisors. Then n equals
a) 756
b) 3087
c) 3200
d) none of these

Ans. \square
12. Let $\mathrm{A}=\{1,2,3\}$. The number of symmetric relations on A is
a) 2^{4}
b) 2^{6}
c) 9
d) none of these

Ans. \square
13. Let $\mathrm{C}[0,1]$ denote the set of all real-valued continuous functions on $[0,1]$. Define ' + ' and ' \because ' on $\mathrm{C}[0,1]$ as follows :
For $\left.f, g \in C[0,1], \begin{array}{c}(f+g)(x)=f(x)+g(x) \\ (f \cdot g)(x)=f(x) g(x)\end{array}\right\}(x \in[0,1])$ Then
a) $\mathrm{C}[0,1]$ is a commutative ring with identity but not an integral domain
b) $\mathrm{C}[0,1]$ is an integral domain
c) $\mathrm{C}[0,1]$ is a skew-field
d) If $\mathrm{A}_{1 / 2}=\left\{\mathrm{f} \in \mathrm{C}[0,1]: \mathrm{f}\left(\frac{1}{2}\right)=0\right\}$ then $\mathrm{A}_{1 / 2}$ is an ideal of $\mathrm{C}[0,1]$

Ans. \square
14. Let A, B, C be three events such that $P(A)=0.4, P(B)=0.5, P(A \cup B)=0 \cdot 6, P(C)=0.6$ and $\mathrm{P}\left(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}^{\mathrm{C}}\right)=0.1$. Then $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \mid \mathrm{C})$ is equal to
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{1}{4}$
d) $\frac{1}{5}$

Ans. \square
15. In an examination there are 80 questions each having four choices. Exactly one of these four choices is correct and the other three are wrong. A student is awarded 1 mark for each correct answer and $-0 \cdot 25$ for each wrong answer. If a student ticks the answer for each question randomly, then the expected value of his/her total marks in the examination is
a) -15
b) 0
c) 5
d) 20

Ans. \square
16. If $\vec{A}=\left(3 x^{2}+6 y\right) \hat{i}-14 y z \hat{j}+20 x z^{2} \hat{k}$, then the value of $\int_{C} \vec{A} \cdot d \vec{r}$ from $(0,0,0)$ to $(1,1,1)$ along the path $\mathrm{C}: \mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$ is
a) 5
b) 4
c) -4
d) -5

Ans.
17. The missing term in the following table is :

| $\mathrm{x} \quad: 0$ | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{f}(\mathrm{x}): 4$ | 3 | 4 | $?$ | 12 |

a) 5
b) 6
c) 7
d) 8

Ans. \square
18. Choose the correct answer or answers : [Here $\mathbb{R}^{\#}=\{$ set of all positive real numbers including 0$\left.\}\right]$
a) The domain of Laplace transformation is the set of all bounded continuous functions defined in \mathbb{R}^{*}
b) The domain of Laplace transformation is the set of all piecewise continuous functions defined in $\mathbb{R}^{\#}$
c) The domain of Laplace transformation is the set of all piecewise continuous functions defined in $\mathbb{R}^{\#}$ and which are of some exponential order as the variable (of the function) tends to infinity
d) none of these

Ans.

\square
19. Solution of $\left(D^{4}+2 D^{3}+3 D^{2}+2 D+1\right) y=0$, where $D \equiv \frac{d}{d x}$ is
a) $e^{-\left(\frac{x}{2}\right)}\left[\left(C_{1}+C_{2} x\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+\left(C_{3}+C_{4} x\right) \sin \left(\frac{\sqrt{3} x}{2}\right)\right]$, where $C_{i}, i=1,2,3,4$ are arbitrary constants
b) $e^{-\left(-\frac{x}{2}\right)}\left[\left(C_{1}+C_{2} x\right) \cosh \left(\frac{\sqrt{3} x}{2}\right)+\left(C_{3}+C_{4} x\right) \sinh \left(\frac{\sqrt{3} x}{2}\right)\right]$, where $C_{i}, i=1,2,3,4$ are arbitrary constants
c) $e^{-\left(\frac{x}{2}\right)}\left[\left(C_{1}+C_{2} x\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+\left(C_{3} x+C_{4} x^{2}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)\right]$, where $C_{i}, i=1,2,3,4$ are arbitrary constants
d) $e^{-\left(\frac{x}{2}\right)}\left[\left(C_{1}+C_{2} x\right) \cosh \left(\frac{\sqrt{3} x}{2}\right)+\left(C_{3} x+C_{4} x^{2}\right) \sinh \left(\frac{\sqrt{3} x}{2}\right)\right]$, where $C_{i}, i=1,2,3,4$ are arbitrary constants

Ans.
20. Choose the correct statement or statements :
a) The function $y=x^{2}+x+3$ is a solution of the initial value problem $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6$ with $y(0)=3$ and $y^{\prime}(0)=1$ on the real line
b) The function $y=5 x^{2}+x+3$ is a solution of the initial value problem $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6$ with $y(0)=3$ and $y^{\prime}(0)=1$ on the real line
c) The function $y=99 x^{2}+x+3$ is a solution of the initial value problem $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6$ with $y(0)=3$ and $y^{\prime}(0)=1$ on the real line
d) The function $y=-x^{2}+x+3$ is a solution of the initial value problem $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6$ with $y(0)=3$ and $y^{\prime}(0)=1$ on the real line

Ans.

21. Let $\mathrm{f}(\mathrm{z})=\frac{1+\mathrm{z}}{1-\mathrm{z}}$, where $\mathrm{z} \in \mathbb{C} \backslash\{1\}$ which of the following is/are true?
a) If $\mathrm{A}=\{|\mathrm{z}|<1\}$ and $\mathrm{B}=\{\operatorname{Re}(\mathrm{z})>0\}$, then $\mathrm{f}(\mathrm{A}) \subseteq \mathrm{B}$, where $\mathrm{f}(\mathrm{A})=\{\mathrm{f}(\mathrm{a}) \mid \mathrm{a} \in \mathrm{A}\}$
b) If $A=\{|z|>1, \operatorname{Im}(z)>0\}$ and $B=\{\operatorname{Re}(z)<0, \operatorname{Im}(z)>0\}$, then $f(A) \subseteq B$, where $f(A)=\{f(a) \mid a \in A\}$
c) If $\mathrm{A}=\{|\mathrm{z}|>1\}$ and $\mathrm{B}=\{\operatorname{Im}(\mathrm{z})>0\}$, then $\mathrm{f}(\mathrm{A}) \subseteq \mathrm{B}$, where $\mathrm{f}(\mathrm{A})=\{\mathrm{f}(\mathrm{a}) \mid \mathrm{a} \in \mathrm{A}\}$
d) If $A=\{|z|<1\}$ and $B=\{\operatorname{Re}(z)<0\}$, then $f(A) \subseteq B$, where $f(A)=\{f(a) \mid a \in A\}$

Ans. \square
22. A particle describes a curve whose equation is $r^{2}=a^{2} \sin 2 \theta$ under a force to the pole. The force is proportional to
a) r^{-3}
b) r^{-11}
c) r^{-5}
d) r^{-7}

Ans. \square
23. The lengths $A B$ and $A D$ of the sides of a rectangle $A B C D$ are 2 a and 2 b . The inclination to $A B$ of one of the principal axes at A is
a) $\frac{1}{2} \tan ^{-1}\left\{\frac{3 \mathrm{ab}}{\mathrm{a}^{2}-\mathrm{b}^{2}}\right\}$
b) $\frac{1}{2} \tan ^{-1}\left\{\frac{3 \mathrm{ab}}{2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}\right\}$
c) $\frac{1}{2} \tan ^{-1}\left\{\frac{3 \mathrm{ab}}{2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}\right\}$
d) $\frac{1}{2} \tan ^{-1}\left\{\frac{3 \mathrm{ab}}{4\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}\right\}$

Ans.
24. A rough uniform board of mass m and length $2 a$, rests on a smooth horizontal plane and a man of mass M walks on it from one end to the other. The distance through the board moves in this time is
a) $\frac{\mathrm{Ma}}{\mathrm{M}+\mathrm{m}}$
b) $\frac{2 m a}{M+m}$
c) $\frac{2 \mathrm{Ma}}{\mathrm{M}+\mathrm{m}}$
d) $\frac{\mathrm{Ma}}{2(\mathrm{M}+\mathrm{m})}$

Ans.

25. A uniform cubical box of edge ' a ' is placed on the top of a fixed sphere. The least radius of the sphere for which the equilibrium will be stable is
a) $\frac{\mathrm{a}}{2}$
b) $\frac{2 a}{3}$
c) a
d) $\frac{\mathrm{a}}{4}$

Ans. \square

