RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711 202

ADMISSION TEST – 2013

		CHEMIST	CRY (Honours)		
Dat				Full Marks: 50	
Tin	ne: $1.30 \text{ p.m} - 3.30 \text{ p}$.m			
Name :			Regn. No. :	Regn. No. :	
Giv	ve tick mark(s) on app	ropriate answer(s) :(No n	egative marking)	[1×50]	
1.	What is the product of	following reaction?			
	CH ₂ OH conc.	$\frac{\text{H}_2\text{SO}_4}{\text{heat}}$			
	а) СНО	b) CH ₃	c) $\left\langle \begin{array}{c} \\ \end{array} \right\rangle$ — CH_3	$d)$ \subset CH_2	
2.	What is the number of		with the molecular formula	$a C_5 H_{12} O$?	
	a) 5	b) 4	c) 3	d) 2	
3.	a) onlysp hybridized ca	compound 1,2-butadiene has onlysp hybridized carbon atoms oothsp and sp ² hybridized carbon atoms d) sp, sp ² and sp ³ hybridized carbon atoms			
4.	The C–H bond distance	<u>-</u>			
	a) C_2H_2	b) C_2H_4	c) C_2H_6	d) $C_2H_2Br_2$	
5.		of a compound can be separ	•		
	a) fractional distillationc) chromatographic technique			b) fractional crystallizationd) the use of suitable optically active reagent	
6.		g statements is correct?	d) the use of suitable	optically active reagent	
0.	a) +I Group stabilizes		b) +I Group stabilizes	s a carbanion	
	c) –I Group stabilises a		•	d) –I Group destabilises a carbanion	
7.	Bromination of n-butane produces a) 1-bromobutane as the major product b) 2-bromobutane as the major product c) both 1-bromo and 2-bromo products with equal percentages d) both 1-bromo and 2-bromo products whose percentages depend upon temperature				
8.	The treatment of prope	ene with Cl_2 at $500 - 600^{\circ}$	C produces		
	a) 1,2 – dichloroproper	ne b) allyl chloride	c) 2,3 – dichloroprope	ene d) 1,3 – dichloropropene	
9.	Consider the following $HC \equiv CH + LiNH_2 \rightleftharpoons$	•			
	$HC \equiv CLi + H_2O \rightarrow H$	$IC \equiv CH + LiOH$			
	Now, predict which of the following orders regarding base strength is correct?				
	a) $HC \equiv C^{-} < OH < N$	JH_{2}^{-}	b) $HC \equiv C^- < NH_2^- <$	COH ⁻	
	c) OH ⁻ < NH ₂ ⁻ < HC	= C [−]	d) $OH^- < HC \equiv C^- <$	NH_2^-	
10.	The electrophile in aro	matic nitration is			

c) nitrite ion

d) nitrate ion

b) nitrinium ion

a) nitronium ion

11.	Butanemurile may be pre	epared by			
	a) propyl alcohol with K	CN	b) butyl alcohol with KCN	1	
	c) butyl chloride with K0	CN	d) propyl chloride with Ko	CN	
12.	m-chlorobenzaldehyde on reaction with conc. KOH at room temperature gives a) potassium m-chlorobenzoate and m-hydroxybenzaldehyde b) m-hydroxybenzaldehyde and m-chlorobenzyl alcohol c) m-chlorobenzyl alcohol and m-hydroxybenzyl alcohol d) potassium m-chlorobenzoate and m-chlorobenzyl alcohol				
13.	The treatment of CH ₃ CH ₂ a) CH ₃ CH ₂ COCl	H ₂ COOH with chlorine in the b) CH ₃ CH ₂ CH ₂ Cl	e presence of phosphorus giv c) CH ₃ CH(Cl)COOH	ves d) CH ₂ (Cl)CH ₂ COOH	
14.	,	repared by reacting aniline v	, , ,	, 2(), 2	
	a) hydrochloric acid b) cuprous chloride				
	c) chlorine in the presence of anhydrous aluminium chloride				
	d) nitrous acid followed by heating with cuprous chloride				
15.	The treatment of phenol with phthalic anhydride in the presence of concentrated sulphuric acid produces				
	a) aspirin	b) methyl red	c) methyl orange	d) phenolphthalein	
16.	Electronegativity values	of Fe, Fe ⁺² and Fe ⁺³ are in t	he order		
	a) $Fe > Fe^{+2} > Fe^{+3}$	b) $Fe^{+2} > Fe > Fe^{+3}$	c) $Fe^{+3} > Fe > Fe^{+2}$	d) $Fe^{+3} > Fe^{+2} > Fe$	
17.	Bohr orbit radius of H at a) 0.265	tom is approximately 0·53Å b) 1·06	. The radius for the first exci c) 1.59	ted orbit is (in Å) d) 2·12	
18.	The total number of ele from ₉₂ U ²³⁸ is	ectrons, protons and neutror	ns in the product formed by	the loss of one α -particle	
	a) 326	b) 333	c) 324	d) 332	
19. The ratio of the number of g.atoms of Pb to the number of gm atoms of U in a mineral is 0.33 . As that all the lead has come from uranium, the age of the mineral is $(k = 1.5 \times 10^{-10} \text{yrs}^{-1})$					
	a) 1.9×10^9 years	b) 19×10 ⁹ years	c) 0.19×10^9 years	d) 0.019×10^9 years	
20.	Which of the following l	has the highest dipole mome	ent?		
	a) NH ₃	b) PH ₃	c) SbH ₃	d) AsH ₃	
21.	Which of the following s	species has the lowest first I	onisation energy?		
	a) O_2^{-2}	b) O ₂	c) O_2^+	d) O_2^-	
22.	The molecule that has lin	near structure is			
	a) NO ₂	b) SiO ₂	c) SO_2	d) CO ₂	
23.	Each carbon atom in Ca	C ₂ is			
	a) sp hybridised	b) sp ² hybridised	c) sp ³ hybridised	d) dsp ³ hybridised	
24.	In the extraction of Iron	from Haematite ore, lime st	one is added to act as		
	a) flux	b) slag	c) a reducing agent	d) an oxidising agent	
25.	Amongst the followings	which one is most stable?			
	a) BaCO ₃	b) CaCO ₃	c) MgCO ₃	d) Na ₂ CO ₃	
26.	_	halogens has the lowest bon	<u> </u>		
	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂	
27.	F ₂ reacts with cold dilute a) NaF, O ₂ and H ₂ O ₂	e (2%) NaOH solution to giv b) NaF, OF ₂ and H ₂ O	ve c) NaF, NaOF and H ₂ O	d) NaF, O ₂ and H ₂ O	
28.	and B react with HCl to	form PbCl ₂ , A and B are res	_		
	a) PbO, PbO ₂	b) Pb_3O_4 , PbO_2	c) PbO_2 , Pb_3O_4	d) PbO ₂ , PbO	

29.	A white sublimable substance that turns black on treatment with a NH ₃ solution can be					
	a) Hg ₂ Cl ₂	b) HgCl ₂	c) As_2O_3	d) ZnCO ₃		
30.	e. A mixture of NH ₄ Cl and NH ₄ I on being heated with solid K ₂ Cr ₂ O ₇ and conc. H ₂ SO ₄ , the solid mixture gives vapours of a dark colour which forms a yellow solution with aqueous NaOH. On acidification with acetic acid followed by treatment with lead acetate, the yellow solution gives a yellow precipitate. The dark colour vapours obtained in the above mentioned reaction is					
	a) CrO_2I_2 only	b) CrO ₂ Cl ₂ only	c) CrO ₂ Cl ₂ and I ₂	d) CrO ₂ I ₂ and Cl ₂		
radi	Statement for Q31, 32 and 33: The hydrogen like species Li^{+2} is in a spherically symmetric state S_1 with one radial node. Upon absorbing light the ion undergoes transition to a state S_2 , which has one radial node and energy equal to that of ground state hydrogen atom.					
31.	The state S_1 is a) 1s	b) 2s	c) 2p	d) 3s		
32	,	unit of hydrogen atom groun	•	u) 55		
32.	a) 0.75	b) 1.50	c) 2.25	d) 4.50		
33.	The orbital angular mome	entum quantum number of th	ne state S ₂ is	,		
	a) 0	b) 1	c) 2	d) 3		
34.	Assuming that Hund's ru molecule is	le is violated, the bond orde	er and the magnetic nature o	f a homonuclear diatomic		
	a) 1 and diamagnetic	b) 1 and paramagnetic	c) 0 and diamagnetic	d) 0 and paramagnetic		
tow	completely empty. Suddenly the tap is opened, adiabatically. As a consequence the gas in A starts moving swards B. The process continues till both the containers get uniformly filled up by gas. The final volume and ressure of the gas is V ₁ +V ₂ and P. 5. The assumptions made during the process is/are a) the collisions are elastic and interaction is there among the gas molecules b) gas molecules are point mass and walls are rigid c) the distance covered in between two successive collisions is free path d) no heat enters or exits the chamber					
36.	The amount of net work a a) $-P.V_2$	done is b) $-P(V_1+V_2)$	c) zero	d) P.V ₂		
37.	Which of the following statements is/are incorrect? a) Energy of a system always decreases in a spontaneous process b) Entropy of a system always decreases in a spontaneous process c) Entropy of a system always increases in a spontaneous process d) Entropy of the universe always increases in a spontaneous process					
38.	Which of the following processes is/are associated with increase of enthalpy? a) the boiling of water b) the condensation of water vapor c) the dissociation of water into hydrogen and oxygen d) the conversion of acetylene to benzene					
	Which of the following 0 a) urea	·1 molar aqueous solution hab) BaCl ₂	c) KCl	d) Na ₂ SO ₄		
40.	A law that relates the solu a) the distribution law	ubility of a gas to its pressure b) Raoult's law	e called— c) Henry's law	d) Ostwald's law		

		$n CH_2 = CH_2 \rightarrow 0$	$(-CH_2-CH_2-)_n$		
			ge enthalpies of bond dissocenthalpy of polymerization p		
	a) -72 kJ	b) +921 kJ	c) 0	d) -195 kJ	
42.	In FCC metal, the no. of	atoms per unit cell is—			
	a) 8	b) 14	c) 6	d) 4	
43.	In a reaction				
		$ClO_2 + I \rightarrow$	$ClO_2^- + I_2$		
			termined by starting with a lack $[ClO_2]^m$ and k includes Γ and		
		time/sec [0	ClO_2] x 10^4 /(mol lit ⁻¹)		
		1.0	4.77		
		2.0	4.31		
		3.0	3.91		
		4.0	3.53		
	What will be the order of				
	a) 2	b) 0	c) 1	d) fractional order	
	a) cathode is the positiveb) cathode is the negativec) electrons flow from and) reduction occurs at cat	e electrode node to cathode in the extern	nal circuit		
45.	With increasing temperate a) 0	ture the equillibrium constant b) 1	nt of a reversible reaction ten c) -1	ds towards— d) ∞	
46.	_	_	e solution of Zn ⁺² is diluted (c) increase by 0.059 V		
47.	In a compound A_xB_y , a) mole of $A = \text{mole of } B = \text{mole of } A_xB_y$ b) equivalent of $A = \text{equivalent of } B = \text{equivalent of } A_xB_y$ c) y times mole of $A = x$ times mole of $B = (x+y)$ times mole of A_xB_y d) y times mole of $A = x$ times mole of B				
48.	The number of moles of in acidic solution is	KmnO ₄ that will be require	ed to react completely with o	ne mole of ferrous oxalate	
	a) 3/5	b) 2/5	c) 4/5	d) 1	
49.	10^{-8} , 3.2 x 10^{-14} and 2.7 x	x 10 ⁻¹⁵ , respectively. Solubil	MX , MX_2 and M_3X at tempe ities of the salt at T are in the c) $MX_2 > M_3X > MX$	rature T are given as 4.0 x e order d) MX > M ₃ X > MX ₂	
50.			ty after 2·303 time-unit. The	,	
	a) 2.303	b) 0.0693	c) 0.693	d) 0.2303	

41. The polymerization of ethylene to linear polyethylene is represented by the reaction