RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202

B. Sc ADMISSION TEST - 2024

MATHEMATICS

Date: 20/06/2024 Full Marks: 40 Time: 11:00 am - 12 noon

Instructions for the candidates

•	Answer	all	questions.
---	--------	-----	------------

- Each question has 4 options out of which only one is correct.
- Tick (\checkmark) the correct option on Answer Sheet.
- The tick (\checkmark) must be very clear if it is smudgy or not clear, no marks will be awarded.
- Each correct answer carries 2 marks and for each incorrect answer 1 mark will be deducted.
- Unanswered questions will not be awarded.
- Multiple answers will be considered as wrong answer.
- Calculator is **not** allowed.

1. If $\cos A = 0.75$, t	then the value of $16(\cos \theta)$	$(\frac{A}{2})^2 - 32\sin(\frac{A}{2})\sin(\frac{5A}{2})$ is	5
(a) -4	(b) -3	(c) 3	(d) 4.

- 2. If a and b are real numbers between 0 and 1 such that the points $z_1 = a + i$, $z_2 = 1 + ib$ and $z_3 = 0$ form an equilateral triangle then,
 - (a) $a = b = 2 \sqrt{3}$ should look like this.
 - (b) $a = 2 \sqrt{3}$, $b = \sqrt{3} 1$ should look like this.
 - (c) $a = \sqrt{3} 1$, $b = 2 \sqrt{3}$ should look like this.
 - (d) None of (a), (b) and (c) is true.
- 3. For each $x \in \mathbb{R}$, let [x] be the greatest integer less than or equal to x. Then

$$\lim_{x \to 0+} x \left(\left[\frac{1}{x} \right] + \left[\frac{2}{x} \right] + \left[\frac{3}{x} \right] + \ldots + \left[\frac{10}{x} \right] \right)$$

- (a) is equal to 55 (b) is equal to 0 (c) is equal to 10 (d) does not exist.
- 4. Which of the following function has a finite number of points of discontinuity in \mathbb{R} ?
- (a) $\sec x$ (b) $\frac{|x|}{x}$ (c) [x]
- 5. A differentiable function f(x) is defined for all x > 0, and it satisfies $f(x^3) = x^4$ for all x > 0. Then the value of f'(8)
 - (a) is equal to $\frac{2}{3}$ (b) is equal to $\frac{4}{3}$ (c) is equal to $\frac{8}{3}$ (d) does not exist

- (d) f has minima at x = 0, if f''(0) > 0.

11. The area of the region in the plane bounded by the curve $y = \tan x$ along with the vertical lines x = 0 and $x = \frac{\pi}{4}$ and the horizontal line y = 1 is

(a)
$$\frac{\pi}{4} - \frac{1}{2} \ln 2$$
,

(b)
$$\frac{\pi}{4} + \frac{1}{2} \ln 2$$
,

(c)
$$\frac{1}{2} \ln 2$$
,

(d) $-\frac{1}{2} \ln 2$

12. If the chord y = mx + 1 of the circle $x^2 + y^2 = 1$ subtends an angle of 45° at the major segment of the circle, then the value of m is

(a)
$$\pm 1$$

(b)
$$\pm 2$$

(c)
$$\pm 3$$

(d) ± 4

13. The angle between the line $\frac{x-2}{1} = \frac{y+1}{3} = \frac{z-4}{2}$ and the plane 3x-2y+4z=6 is (a) $\cos^{-1}(\frac{5}{\sqrt{406}})$ (b) $\sin^{-1}(\frac{5}{\sqrt{406}})$ (c) $\cos^{-1}(\frac{17}{\sqrt{406}})$ (d) $\sin^{-1}(\frac{17}{\sqrt{406}})$

(a)
$$\cos^{-1}(\frac{5}{\sqrt{406}})$$

(b)
$$\sin^{-1}(\frac{5}{\sqrt{406}})$$

(c)
$$\cos^{-1}(\frac{17}{\sqrt{406}})$$

14. The eccentric angle in the first quadrant of a point on the ellipse $\frac{x^2}{10} + \frac{y^2}{8} = 1$ at a distance 3 units from the centre of the ellipse is

(a)
$$\frac{\pi}{2}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{4}$$

(d) $\frac{\pi}{6}$

15. The value of

$$2\left({}^{10}C_{2} + {}^{10}C_{4} + {}^{10}C_{6} + {}^{10}C_{8}\right)$$

is

(a) 2^{10}

(b) $2^{10} - 1$

(c) $2^{10}-2$

(d) $2^{10}-4$

16. A speaks truth in 75% cases and B speaks truth in 80% cases. The probability that they will say opposite things while describing a single event is

(a) $\frac{1}{2}$

(b) $\frac{7}{20}$

(c) $\frac{1}{4}$

(d) $\frac{2}{5}$

17. Let A be a finite set and $1 \notin A$. If $|\mathcal{P}(A)| > 100$ then $|\mathcal{P}(A \cup \{1\})|$ is $(|\mathcal{P}(X)|$ denotes the number of elements of a finite set X)

(a) 101

(b)128

(c) 256

(d) 412

18. Let $A = \{1, 2, 3, ...\}$, $B = \{2, 4, 6, ...\}$. Which of the following is false?

- (a) There is a one-one map from A to B.
- (b) There is a surjective map from A to B.
- (c) There are infinitely many bijective maps from A to B.
- (d) No map from A to B is a bijection.

19. Let $A = \{1, 2, 3\}$, $B = \{1, 2\}$. The number of surjective maps from A to B is

(a) 4

(b) 6

(c) 8

(d) 10

20. Let $R = \{(3,3), (6,6), (9,9), (12,12), (3,9), (3,12), (3,6), (6,12)\}$ be a relation on the set $A = \{3,6,9,12\}$. The relation is

- (a) an equivalence relation.
- (b) reflexive and symmetric only.
- (c) reflexive and transitive only.
- (d) reflexive only.
