RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202
B. Sc ADMISSION TEST - 2024

MATHEMATICS
Date : 20/06/2024

Instructions for the candidates

- Answer all questions.
- Each question has 4 options out of which only one is correct.
- Tick (\checkmark) the correct option on Answer Sheet.
- The tick (\checkmark) must be very clear - if it is smudgy or not clear, no marks will be awarded.
- Each correct answer carries 2 marks and for each incorrect answer 1 mark will be deducted.
- Unanswered questions will not be awarded.
- Multiple answers will be considered as wrong answer.
- Calculator is not allowed.

1. If $\cos A=0.75$, then the value of $16\left(\cos \frac{A}{2}\right)^{2}-32 \sin \left(\frac{A}{2}\right) \sin \left(\frac{5 A}{2}\right)$ is
(a) -4
(b) -3
(c) 3
(d) 4 .
2. If a and b are real numbers between 0 and 1 such that the points $z_{1}=a+i, z_{2}=1+i b$ and $z_{3}=0$ form an equilateral triangle then,
(a) $a=b=2-\sqrt{3}$ should look like this.
(b) $a=2-\sqrt{3}, b=\sqrt{3}-1$ should look like this.
(c) $a=\sqrt{3}-1, b=2-\sqrt{3}$ should look like this.
(d) None of (a), (b) and (c) is true.
3. For each $x \in \mathbb{R}$, let $[x]$ be the greatest integer less than or equal to x . Then

$$
\lim _{x \rightarrow 0+} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\left[\frac{3}{x}\right]+\ldots+\left[\frac{10}{x}\right]\right)
$$

(a) is equal to 55
(b) is equal to 0
(c) is equal to 10
(d) does not exist.
4. Which of the following function has a finite number of points of discontinuity in \mathbb{R} ?
(a) $\sec x$
(b) $\frac{|x|}{x}$
(c) $[x]$
(d) $\tan x$
5. A differentiable function $f(x)$ is defined for all $x>0$, and it satisfies $f\left(x^{3}\right)=x^{4}$ for all $x>0$. Then the value of $f^{\prime}(8)$
(a) is equal to $\frac{2}{3}$
(b) is equal to $\frac{4}{3}$
(c) is equal to $\frac{8}{3}$
(d) does not exist
6. If $A=\left[\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right]$, and $f(x)=1+x+\ldots+x^{10}$, then $f(A)=$
(a) $\left[\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}0 & 3^{10} \\ 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right]$
7. The sum of the first 19 terms of an Arithmetic Progression is 57. The $10^{\text {th }}$ term of the Arithmetic Progression is
(a) 1
(b) 2
(c) 3
(d) 4
8. The sum of the first 5 terms and first 10 terms of a Geometric Progression are 1 and 33 respectively. Then the $10^{\text {th }}$ term of the Geometric Progression is
(a) $\frac{1024}{37}$
(b) $\frac{712}{33}$
(c) $\frac{512}{31}$
(d) $\frac{350}{39}$
9. Which of the following function satisfy the ordinary differential equation $x^{2} \frac{d y}{d x}+y=1$ with $y(1)=2$, in the interval $[1, \infty)$
(a) $y=1+\exp (1-x)$
(b) $y=1-2 \exp \left(\frac{1}{x}\right)$
(c) $y=1-\exp \left(\frac{1-x}{x}\right)$
(d) $y=1+\exp \left(\frac{1-x}{x}\right)$
10. Let f be a twice differentiable even function over \mathbb{R} with $f^{\prime \prime}(x)$ being constant. Then, which of the following statements is false for the function f.
(a) $f^{\prime}(0)=0$.
(b) f has neither maxima nor minima at $x=0$.
(c) f has maxima at $x=0$, if $f^{\prime \prime}(0)<0$.
(d) f has minima at $x=0$, if $f^{\prime \prime}(0)>0$.
11. The area of the region in the plane bounded by the curve $y=\tan x$ along with the vertical lines $x=0$ and $x=\frac{\pi}{4}$ and the horizontal line $y=1$ is
(a) $\frac{\pi}{4}-\frac{1}{2} \ln 2$,
(b) $\frac{\pi}{4}+\frac{1}{2} \ln 2$,
(c) $\frac{1}{2} \ln 2$,
(d) $-\frac{1}{2} \ln 2$
12. If the chord $y=m x+1$ of the circle $x^{2}+y^{2}=1$ subtends an angle of 45° at the major segment of the circle, then the value of m is
(a) ± 1
(b) ± 2
(c) ± 3
(d) ± 4
13. The angle between the line $\frac{x-2}{1}=\frac{y+1}{3}=\frac{z-4}{2}$ and the plane $3 x-2 y+4 z=6$ is
(a) $\cos ^{-1}\left(\frac{5}{\sqrt{406}}\right)$
(b) $\sin ^{-1}\left(\frac{5}{\sqrt{406}}\right)$
(c) $\cos ^{-1}\left(\frac{17}{\sqrt{406}}\right)$
(d) $\sin ^{-1}\left(\frac{17}{\sqrt{406}}\right)$
14. The eccentric angle in the first quadrant of a point on the ellipse $\frac{x^{2}}{10}+\frac{y^{2}}{8}=1$ at a distance 3 units from the centre of the ellipse is
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
15. The value of

$$
2\left({ }^{10} C_{2}+{ }^{10} C_{4}+{ }^{10} C_{6}+{ }^{10} C_{8}\right)
$$

is
(a) 2^{10}
(b) $2^{10}-1$
(c) $2^{10}-2$
(d) $2^{10}-4$
16. A speaks truth in 75% cases and B speaks truth in 80% cases. The probability that they will say opposite things while describing a single event is
(a) $\frac{1}{2}$
(b) $\frac{7}{20}$
(c) $\frac{1}{4}$
(d) $\frac{2}{5}$
17. Let A be a finite set and $1 \notin A$. If $|\mathcal{P}(A)|>100$ then $|\mathcal{P}(A \cup\{1\})|$ is $(|\mathcal{P}(X)|$ denotes the number of elements of a finite set $X)$
(a) 101
(b) 128
(c) 256
(d) 412
18. Let $\mathrm{A}=\{1,2,3, \ldots\}, \mathrm{B}=\{2,4,6, \ldots\}$. Which of the following is false?
(a) There is a one-one map from A to B.
(b) There is a surjective map from A to B.
(c) There are infinitely many bijective maps from A to B.
(d) No map from A to B is a bijection.
19. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{1,2\}$. The number of surjective maps from A to B is
(a) 4
(b) 6
(c) 8
(d) 10
20. Let $R=\{(3,3),(6,6),(9,9),(12,12),(3,9),(3,12),(3,6),(6,12)\}$ be a relation on the set $A=\{3,6,9,12\}$. The relation is
(a) an equivalence relation.
(b) reflexive and symmetric only.
(c) reflexive and transitive only.
(d) reflexive only.

