RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202

M. Sc ADMISSION TEST - 2023

MATHEMATICS

Date: 18/08/2023 Full Marks: 50 Time: 12 noon - 1:00 pm

Instructions for the candidates

- Answer all questions.
- Each question has 4 options out of which only one is correct.
- Tick (\checkmark) the correct option on OMR SHEET.
- The tick (\checkmark) must be very clear if it is smudgy or not clear, no marks will be awarded.
- Each correct answer carries 2 marks and for each incorrect answer 1 mark will be deducted.
- Unanswered questions will not be awarded.
- Multiple answers will be considered as wrong answer.
- Calculator is **not** allowed.
- 1. For the curve $y(x) = \begin{cases} \sqrt{1+x^2} \sin \frac{1}{x}, & when \ x \neq 0 \\ 0, & when \ x = 0 \end{cases}$,
 - (a) $y = \pm d$ are asymptotes, where $d \in \mathbb{Q}^c$.
 - (b) $y = \pm 1$ are the only asymptotes.
 - (c) $x = \pm d$ are asymptotes, $\forall d \in \mathbb{R}$.
 - (d) None of (a), (b) and (c) is true.
- 2. If C denotes the line joining from the point z=i to z=1 and let $I=\int_C \frac{dz}{z^4}$, then which of the following is not true
 - (a) $|I| \le 4\sqrt{2}$
- **(b)** $|I| \le 8$
- (c) |I| > 0
- (d) |I| > 8

- 3. The function $f(z) = x^2 + iy^2$ (where z = x + iy) is
 - (a) analytic everywhere

(b) analytic at some points of \mathbb{C}

(c) nowhere analytic

- (d) differentiable everywhere.
- 4. The general solution of $\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} = 5z + tan(y 3x)$, (where z is a function of x and y) is
 - (a) 5x ln(5z tan(y 3x)) = f(y 3x).
- **(b)** 5y ln(5z + tan(y 3x)) = f(y 3x).
- (c) 5x ln(5z + tan(y 3x)) = f(y 3x). (Here f is an arbitrary function)
- (d) 5y ln(5z tan(y 3x)) = f(y 3x).

- 5. The dimension of the subspace $W = \{(x, y, z, w) \in \mathbb{R}^4 : x = 2y, z = 3w\}$ in \mathbb{R}^4 is (a) 1 (b)2 (c) 3 (d)4.
- 6. If $\{(1,2,1), x, (3,1,1)\}$ is a basis for \mathbb{R}^3 , then x can be
 - (a)(4, 3, 2)
- **(b)**(-2, 1, 0)
- (c)(1, -3, -1)
- **(d)**(1, 2, 3).

17.	Suppose $A = \{n + \frac{1}{n} : (a) \ 0 \}$	$n \in \mathbb{N}$. The num (b) 1	ber of limit points o		(d) ∞ .
18.	Let $\mathbb{Q} + \sqrt{2} = \{r + \sqrt{a}\}$ (a) closed in \mathbb{R}			(d) bounded	in \mathbb{R} .
19.	Suppose $d: \mathbb{R} \times \mathbb{R} \to d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$ The metric space (\mathbb{R}, a) bounded but not t	d) is	o) totally bounded	(c) separable	(d) compact.
20.	Suppose $d: \mathbb{N} \times \mathbb{N} \to$ (a) complete and separable but not	arable	(b) not	netric space (N, complete nded but not sep	
21.	A subset A of a metri (a) closed and bounde (c) totally bounded		(b) comple	te te and totally bo	ounded
22.	The polar equation of positive direction of the (a) $\frac{5}{r} = 3 + 2\cos\theta$	he x-axis be the post	itive direction of the	e polar axis is	
23.	The equation of the ri (a) $xy - yz - zx = 0$ (c) $xy - yz + zx = 0$		(b) <i>xy</i>	positive coordina + $yz - zx = 0$ ne of (a), (b) and	
24.	A particle is projected with velocity u from a fixed point O on a straight line and moves along the line so that its acceleration f is given by $k\sqrt{t}$, where t is the time from the instant it leaves O and k is a constant. The distance from O in terms of acceleration is (a) $\frac{uf^2}{k^2} + \frac{4f^5}{15k^4}$ (b) $\frac{uf^2}{k^2} - \frac{4f^5}{15k^4}$ (c) $\frac{uf^2}{k^2} + \frac{4f^5}{5k^4}$ (d) $\frac{uf^2}{k^2} - \frac{4f^5}{5k^4}$				
25.	The law of force, who proportional to (a) r	en a particle describ (b) $\frac{1}{r}$	es the curve $p^2 = \frac{1}{r^2}$	ar under a force	e to the pole is $(\mathbf{d}) \frac{1}{r^3}.$

----×----