RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202

M. Sc ADMISSION TEST - 2022

MATHEMATICS

Date : 20/08/2022

Full Marks : 50

Time : 12 noon - 1:00 pm

<u>Instructions for the candidates</u>

- Answer all questions.
- Each question has 4 options out of which only one is correct.
- Tick (\checkmark) the correct option on OMR SHEET.
- The tick (\checkmark) must be very clear if it is smudgy or not clear, no marks will be awarded.
- Each correct answer carries **2** marks and for each incorrect answer **1** mark will be deducted.
- Unanswered questions will not be awarded.
- Multiple answers will be considered as wrong answer.
- Calculator is **not** allowed.
- All the notations have their usual significance.
- Consider the vector space V of polynomials in one-variable upto degree 2, over ℝ. Let W₁, W₂ be two subspaces of V, each of dimension 2. Then, which of the following statements is true?
 (a) W₁ ∪ W₂ = V.
 - (b) $W_1 \cap W_2$ is a subspace of dimension greater than equal to 1.
 - (c) $W_1 (W_1 \cap W_2)$ will be a subspace of dimension 1.
 - (d) $V (W_1 \cup W_2)$ is the trivial subspace of V.
- 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by $T(e_1) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}; T(e_2) = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix};$

 $T(e_3) = \begin{pmatrix} 2\\1\\3 \end{pmatrix}$ where $\{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 . Then, which of the following

matrix gives the correct matrix representation of the linear transformation T with respect to the standard basis?

- (a) $\begin{pmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 3 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 3 & 2 \\ 2 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
- 3. If T : R³ → R³, takes T(1,2,3) = (1,0,0); T(3,2,0) = (0,1,0) and T(3,0,0) = (0,1,2). Then, which of the following statements is incorrect?
 (a) T is invertible.
 - (b) T is one-one, but not onto.
 - (c) ker(T) is trivial.
 - (d) $Rank(T) \ge 2$.

- 4. Let A be a 3×3 real matrix. Which of the following polynomials definitely can not annihilate A?
 - (a) $x^2 + 2x + 1$.
 - (b) $x^2 + x + 1$.
 - (c) $x^3 + 3x^2 + 3x + 1$.
 - (d) $x^3 3x^2 + 3x 1$.
- 5. Let A be an infinite, closed, bounded subset of a metric space (X, d). Then
 - (a) A is compact.
 - (b) A has a limit point.
 - (c) Every sequence in A has a convergent subsequence.
 - (d) None of (a), (b) and (c).
- 6. Let d be the usual metric on \mathbb{R} . Consider the map $f : (\mathbb{R}, d) \to (\mathbb{R}, d)$ given by $f(x) = x + x^3, \forall x \in \mathbb{R}$. Which one of the following is false?
 - (a) f is continuous.
 - (b) f maps every closed set to a closed set.
 - (c) f maps every open set to an open set.
 - (d) f preserves distance.

7. Consider the subset $A = \{n + \frac{1}{n} : n \in \mathbb{N}\}$ of \mathbb{R} in usual metric. Then

- (a) A has exactly one limit point.
- (b) A has countably infinite number of limit points.
- (c) A has uncountably many limit points.
- (d) A has no limit point.
- 8. In the group Z, the subgroup generated by {9, 10} is
 (a) Z
 (b) 9Z
 (c) 10Z
 (d) 90Z.
- 9. The order of the permutation (17)(56)(13)(45)(18)(52) is
 (a) 2
 (b) 4
 (c) 8
 (d)16.
- 10. Which of the following statement is not true in general
 - (a) Every ED is an UFD
 - (b) Every UFD is a PID
 - (c) Every ED is a PID
 - (d) Every UFD is an Integral Domain.
- 11. If the normal to the curve $x^{2/3} + y^{2/3} = a^{2/3}$ makes an angle ϕ with the positive direction of x-axis, then its equation is
 - (a) $y \sin \phi x \cos \phi = a \cos 2\phi$, (b) $y \cos \phi x \sin \phi = a \cos 2\phi$,
 - (c) $y \cos \phi + x \sin \phi = a \sin 2\phi$, (d) None of (a), (b) and (c).

12. The radius of curvature at any point (r, θ) on the cardiode $r = a(1 - \cos \theta)$ is

(a)
$$\frac{4}{3}\sqrt{2ar}$$
, (b) $\frac{2}{3}\sqrt{\frac{2a}{r}}$, (c) $\frac{2}{3}\sqrt{2ar}$, (d) None of (a), (b) and (c).

13. The series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx)^2}$ is

- (a) convergent on [0,1] but not uniformly,
- (b) divergent on [0,1],
- (c) uniformly convergent on [0,1],
- (d) None of (a), (b) and (c).

14. Let
$$f(x) = \begin{cases} 4, & x \in [0,2] \cap \mathbb{Q} \\ 5, & x \in [0,2] - \mathbb{Q} \end{cases}$$
, then
(a) $\overline{\int_0^2} f(x) dx = 10, \quad \underline{\int_0^2} f(x) dx = 8,$
(b) $\overline{\int_0^2} f(x) dx = 5, \quad \underline{\int_0^2} f(x) dx = 4,$
(c) $\overline{\int_0^2} f(x) dx = 10, \quad \underline{\int_0^2} f(x) dx = 5,$
(d) None of (a), (b) and (c).

15. The particular integral for $(D^2 - 4D + 4)y = xe^{2x}$ where $D \equiv \frac{d}{dx}$, is

(a)
$$\frac{x^3 e^{2x}}{6}$$
, (b) $\frac{x^3 e^{2x}}{12}$, (c) $\frac{x^2 e^x}{3}$, (d) None of (a), (b) and (c)

16. If $u_{xx} - (2\sin x)u_{xy} - (\cos^2 x)u_{yy} - (\cos x)u_y + 16 = 0$, then

- (a) the partial differential equation is parabolic,
- (b) the partial differential equation is hyperbolic,
- (c) the partial differential equation is elliptic,
- (d) None of (a), (b) and (c).
- 17. Let $f : \mathbb{C} \to \mathbb{C}$ be a function which is analytic at z_0 , then
 - (a) f is not differentiable at z_0 ,
 - (b) $\exists m \in \mathbb{N}$ such that f is differentiable at z_0 upto m^{th} order,
 - (c) f is infinitely many times differentiable at z_0 ,
 - (d) None of (a), (b) and (c).
- 18. If $I = \int_C \frac{(\sin z)^2 e^{2z}}{(3z-8)^9} dz$ where C is the square with vertices at (0, 0), (1, 0), (1, 1) and (0, 1) in the positive sense, then

Then,

(a) I = 2 (b) I = 1 (c) I = 0.5 (d) I = 0.

19. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that $f(x, y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & xy \neq 0, \\ 0, & xy = 0. \end{cases}$

- (a) Repeated limits of f exist at (0,0), and they are equal
- (b) Repeated limits of f exist at (0,0), and they are unequal
- (c) Repeated limits of f do not exist at (0,0), but the double limit of f exist at (0,0)
- (d) Neither repeated limits nor double limit of f exist at (0,0).
- 20. Suppose you are using the method involving Lagrange multiplier to find the shortest distance between (-1, 4) and the line 12x 5y + 71 = 0. What are the values of the shortest distance and Lagrange multiplier, respectively?
 (a) 3, ⁵/₁₃
 (b) 3, 1
 (c) 3, ⁶/₁₃
 (d) 1, 1.
- 21. If the Trapezoidal rule with the single interval [0,1] is exact for approximating the integral $\int_0^1 (x^3 cx^2) dx$, then the value of c is equal to

(a)
$$0.5$$
 (b) 1 (c) 1.5 (d) 2

22. If p(x) = 2 - (x+1) + x(x+1) - bx(x+1)(x-a) interpolates the points (x, y) in the following table

x	-1	0	1	2
y	2	1	2	-7

then
$$a + b =$$

(a) 0 (b) 1 (c) 3 (d) 4.

23. The locus of the poles of tangents to the parabola $y^2 = 4ax$ with respect to the parabola $y^2 = 4bx$ is

(a)
$$y^2 = \frac{4b^2}{a}x$$
 (b) $y^2 = \frac{4a^2}{b}x$ (c) $y^2 = \frac{4b}{a}x$ (d) $y^2 = \frac{4a}{b}x$

- 24. The equation of the right circular cone which contains three positive co-ordinate axes is
 - (a) xy + 2yz + zx = 0
 - **(b)** 2xy + yz + zx = 0
 - (c) xy + yz + 2zx = 0
 - (d) xy + yz + zx = 0.
- 25. The quadric represented by $26x^2 + 20y^2 + 10z^2 4yz 16zx 36xy + 52x 36y 16z + 25 = 0$ has (a) a unique centre
 - (b) a line of centres
 - (c) a plane of centres
 - (d) no centre.