RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711 202

ADMISSION TEST – 2016

CHEMISTRY (Honours)

Date : 14-06-2016 Full Marks : 50 Time: $11\cdot00 \text{ a.m} - 12\cdot30 \text{ p.m}$

Instructions for the candidate

Answer all the questions given below. Each question carries 2 marks. Tick (\checkmark) the correct option. The tick must be very clear — if it is smudgy or not clear, no marks will be awarded.

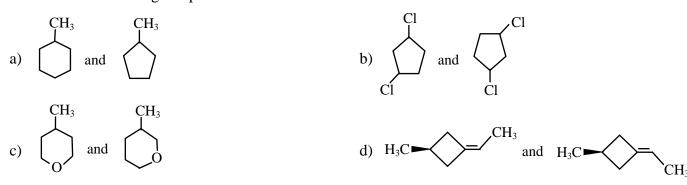
Name of the student:

Application No. : ______

Signature of the student : ______ Signature of the Invigilator : _____

- 1. What is the correct systematic name (IUPAC name) for the compound below? (CH₃)₂CHCH(CH₂CH₃)(CH₂CH₂CH₃)
 - a) 3-Isopropylhexane

a) 1R, 3R, 4S


b) 2-Methyl-3-propylpentane

c) Ethyl isopropyl propyl methane

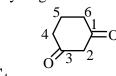
- d) 3-Hexylpropane
- 2. Which one of the following compounds has a dipole moment significantly different from zero?

a)
$$CN$$
 $CICH_2$ CH_2CI CH_3C CH

3. Which of the following is a pair of structural isomers?

4. Which of the following five options is the correct order of relative stabilities of cations a, b and c as written below (most stable first)?

5. What is the correct stereochemical descriptor of the optically active compound drawn below?

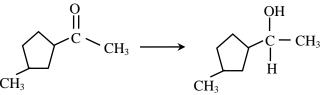

6.	All the molecules drawn below are neutral compounds	Which one does not contain a formal positive
	charge and a formal negative charge?	

a)
$$(CH_3)_3N - B(CH_3)_3$$
 b) $(CH_3)_2N - O - CH_3$ c) $CH_2 = N = N$

c)
$$CH_2 = N = N$$

d)
$$(CH_3)_3 N - O$$

Which carbon has most acidic hydrogen?


a) C_2

b) C₄

c) C₅

d) C_6

The appropriate reagent(s) for the transformation is/are

- a) Zn, Hg/HCl, 523 K
- b) NH₂NH₂, HO⁻
- c) NaBH₄ or LiAlH₄
- d) All of these

9. What is the correct order of reactivity of halides towards S_N^{-1} reaction?

a)
$$1^{\circ} > 2^{\circ} > 3^{\circ}$$

b)
$$3^{\circ} > 2^{\circ} > 1^{\circ}$$

c)
$$2^{\circ} > 3^{\circ} > 1^{\circ}$$

d)
$$1^{\circ} > 3^{\circ} > 2^{\circ}$$

10. When toluene is converted to p-aminobenzoic a acid, the steps involved are in order

a) Nitration, oxidation, reduction

b) Oxidation, nitration, reduction

c) Nitration, reduction, oxidation

d) Oxidation, reduction, nitration

11. From the following reactions

$$HC \equiv CH + LiNH_2 \longrightarrow HC \equiv CLi + NH_3$$

 $NH_3 + R^- \longrightarrow NH_2^- + RH$

predict which of the following orders regarding base strength is correct?

a)
$$R^- < NH_2^- < HC \equiv C^-$$

b)
$$R^- > NH_2^- > HC \equiv C^-$$

a)
$$R^- < NH_2^- < HC \equiv C^-$$
 b) $R^- > NH_2^- > HC \equiv C^-$ c) $R^- > NH_2^- < HC \equiv C^-$ d) $R^- < NH_2^- > HC \equiv C^-$

d)
$$R^- < NH_2^- > HC \equiv C^-$$

12. Phenol on exposure to air produces

- a) p-benzoquinone
- b) o-benzoquinone
- c) o-and p-benzoquinone d) Phenoquinone

a)
$$Fe^{3+} > Cr^{3+} > Ni^{2+} > Cu^{2+}$$

b)
$$Cu^{2+} > Ni^{2+} > Cr^{3+} > Fe^{3+}$$

c)
$$Cr^{3+} > Fe^{3+} > Cu^{2+} > Ni^{2+}$$

d) none of these

14. Which two is not identical in shape

b)
$$PF_6^-$$
, SF_6

c)
$$IO_3^-$$
, XeO_3

d)
$$BH_4^-$$
, NH_4^+

15. Which one contain O – O linkage

a)
$$H_2S_2O_8$$

c)
$$H_2S_2O_6$$

d)
$$H_2S_4O_6$$

16. The correct second ionisation energy of Ti, V, Cr and Mn is—

a)
$$Cr > Mn > V > Ti$$

b)
$$Mn > Cr > V > Ti$$

c)
$$Ti > V > Cr > Mn$$

17. Which of the following statements is true?

- a) Energy of the universe is a constant while entropy decreases with time
- b) Free energy of the universe decreases while entropy increases with time
- c) Energy of the universe is a constant while entropy increases with time
- d) Both free energy and entropy of the universe increases with time

18. Consider the reaction
$$A+2B \rightarrow P$$
 which of the following relations will be valid

a)
$$\frac{d[A]}{dt} = \frac{d[B]}{dt}$$

b)
$$\frac{d[A]}{dt} = 2\frac{d[B]}{dt}$$
 c) $2\frac{d[A]}{dt} = \frac{d[B]}{dt}$

c)
$$2\frac{d[A]}{dt} = \frac{d[B]}{dt}$$

d)
$$2\frac{d[A]}{dt} = -\frac{d[B]}{dt}$$

19.	Which of the follo the gas: a) propane	wing hydrocarbons gives t b) methane	he maximum heat yield on o	complete combustion of 1 litre of d) ethylene		
20.	Consider the equili	brium				
	$A+B \rightleftharpoons C$ (all species gaseous)					
	a) The equilibriumb) The equilibriumc) The equilibrium	constant is independent of constant depends on temporal constant has the unit of protalyst does not have any effective constant and constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of protalyst does not have any effective constant has the unit of	pressure erature	ant value		
21.	Which of the followa) cyclooctane c) normal octane	wing hydrocarbons will be	b) 2,2-dimethylhex	t engine fuel? b) 2,2-dimethylhexane d) 2,2,4-trimethylpentane		
22.	Which of the following changes have no effect on the chemical equilibrium in the thermal decomposition of CaCO ₃ ? a) temperature elevation b) pressure decrease c) addition of catalyst d) a change in the CO ₂ concentration					
23.	The IUPAC name (a) cobalt (II) hexaa c) hexaamminecob e) cobalt (II) chlori	alt (II) chloride	b) cobalt (II) hexaa	is b) cobalt (II) hexaammonia dichloride d) hexaamminedichlorocobalt (II)		
24.	Which of the following acid-base pairs is most suitable for keeping the pH constant at 9 in an aqueous solution?					
	a) CH ₃ COOH, CH	$_{3}COO$	b) $\stackrel{^{+}}{N}H_4$ NH_3			
	c) H ₂ CO ₃ HCO ₃		d) H_2PO_4 H_3PO_4			
25.	A solution with a volume of 1.00 dm^3 is saturated with lead iodide, Pbl ₂ . The concentration of iodide ions is 2.7 mol dm^{-3} . Determine the solubility product of PbI ₂ .					
	a) 3.6×10^{-6}	b) 2.0×10^{-8}	c) 9.8×10^{-9}	d) 2.5×10^{-9}		

FOR ROUGH WORK

FOR ROUGH WORK