RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711 202

ADMISSION TEST – 2015

INDUSTRIAL CHEMISTRY (Honours)

Date : 18-06-2015 Full Marks : 50 Time: $03\cdot00 \text{ p.m} - 04\cdot00 \text{ p.m}$

Instructions for the candidate

Answer all the questions	given below.	Each question	carries 2 marks.	Tick (\checkmark) the	correct option.	The tick
must be very clear — if i	t is smudgy of	r not clear, no m	narks will be awa	rded.		

Naı	me of the student :					
App	plication No. :					
1.	A solution is made by dis	ssolving 49g of H ₂ SO ₄ in 25 b) 1M	60ml of water. The molarity of c) 4M	of the solution prepared is d) 5M		
2.	The number of oxygen at a) 6×10^{23}	coms present in 1 mole of ox b) 6.022×10^{34}	calic acid dihydrate is c) 7.22×10^{23}	is d) 36.13×10^{23}		
3.	The configuration of the a) $3d^54s^1$	valence orbital of an element b) $3d^24s^2$	nt with atomic number 22 is c) $4s^14p^1$	d) $3d^24s^14p^1$		
4.	The elements in which that a) lanthanoids	The elements in which the electrons are progressive b) lanthanoids b) actinoids		c) transition elements d) halogens		
5.	Which of the following molecules contains covalent and coordi a) CCl ₄ b) H ₂ SO ₄ c) NaCl			d) Mg(OH) ₂		
6.	Which of the following is non-polar? a) SO ₂ b) CO ₂ c) H ₂ O d) NH ₂ O		d) NH ₃			
7.	Arrange the following in increasing order of covaler a) NaCl < MgCl ₂ < AlCl ₃ c) AlCl ₃ < MgCl ₂ < NaCl		t character –NaCl, MgCl ₂ , AlCl ₃ b) MgCl ₂ < NaCl < AlCl ₃ d) NaCl < AlCl ₃ < MgCl ₂			
8.	What volume in litres will be occupied by 4·4g of C a) 22·4 L b) 44·8 L		O ₂ at STP ? c) 12·2 L d) 2·24 L			
9.	For an ideal gas, number a) PT/R	For an ideal gas, number of moles per litre in terms of its pressure, temperature and gas constant is a PT/R b) P/RT c) PRT d) RT/P		-		
10.	*	For a reaction to be spontaneous at any temperature, the conditions are a) $\Delta H = +ve$, $\Delta S = +ve$ b) $\Delta H = -ve$, $\Delta S = -ve$ c) $\Delta H = +ve$, $\Delta S = -ve$ d) $\Delta H = -ve$, $\Delta S = -ve$		d) $\Delta H = -ve$, $\Delta S = +ve$		
11.	According to Lewis conca) proton donor	ept, an acid is a/an b) electron pair donor	c) proton acceptor	d) electron pair accepto		
12.	Which of the following is conjugate acid of SO_4^{2-} ?					
	a) HSO ₄	b) H ⁺	c) H ₂ SO ₄	$d SO_4^{2-}$		
13.	The solubility product of a) 143.5	AgCl is 1.5625×10^{-10} at 2 b) 108	25°C. Its solubility in grams pc) 1.57×10 ⁻⁸	per litre will be d) 1.79×10^{-3}		
14.	BeO is insoluble but BaO is soluble. Give reason. a) Lattice energy of BeO is higher than BaO due to small size of Be ²⁺ ion and its covalent nature b) Hydration energy of BeO is lower than BaO due to small size Be ²⁺ ion c) BeO is amphoteric in nature while BaO is basic d) BeO forms hydrated salts while BaO forms anhydrous salts					

15.	When plaster of Paris comes in contact with water it sets into a hard mass. The composition of the hass is							
	a) CaSO ₄ ·H ₂ O	b) $CaSO_4 \cdot Ca(OH)_2$	c) CaSO ₄ ·2H ₂ O	d) $CaSO_4 \cdot 2Ca(OH)_2$				
16.	Buckminsterfullerene is							
	a) graphite	b) diamond	c) C-60	d) quartz				
17.	What is the order of reactivity of hydrogen atoms attached to carbon atom in an alkene?							
	,	b) $2^{\circ} > 1^{\circ} > 3^{\circ}$	c) $3^{\circ} > 2^{\circ} > 1^{\circ}$	d) $1^{\circ} > 2^{\circ} > 3^{\circ}$				
18.	0 1	ollutants is not harmful for l	· ·	1) 1/0				
	b) CO b) CO ₂		c) SO_2 d) NO_2					
19.	An electric current is passed through silver nitrate solution using silver electrodes. 15.28 g of silver was found to be deposited on cathode. What will be the weight of copper deposited on cathode if same amount of electricity is passed through copper sulphate solution using copper electrodes?							
	a) 4·49 g	b) 6·4 g	c) 12·8 g	d) 3·2 g				
20.			lucts: $4H_3PO_3 \xrightarrow{\Delta} 3H_3P$	$O_4 + PH_3$				
	The above reaction is an e	•						
	a) oxidation	b) thermal decomposition	,	d) reduction				
21.	. The increasing order of crystal field splitting strength of the given ligands is							
	a) $NH_3 < Cl^- < CN^- < F^-$	$<$ CO $<$ H $_2$ O	b) $F^- < Cl^- < NH_3 < CN^- < H_2O < CO$					
	c) $Cl^- < F^- < H_2O < NH_3$	$<$ CN $^ <$ CO	d) $CO < CN^- < NH_3 < H_2O < F^- < Cl^-$					
22.	An unknown alcohol is treated with the "Lucas reagent" to determine whether the alcohol is primary secondary or tertiary. Which reacts fastest and by what mechanism?							
	a) Tertiary alcohol by S_{N^2}	2	b) Secondary alcohol S _{N¹}					
	c) Tertiary alcohol S_{N^1}		d) Secondary alcohol S_{N^2}					
23.	-	(C) obtained in the reaction	=					
	CH ₃ CH ₂ COOH PCl ₃	$(A) \xrightarrow{C_6H_6} (B) \xrightarrow{NH_2N} base, h$	$\stackrel{\text{CH}_2}{\text{eat}}$ (C)					
	a) $\langle \bigcirc \rangle$ C – OCH ₂ CH ₃	$ \begin{array}{c} O \\ \hline O \\ -C - OCH_2CH_3 \end{array} $ b) $ \begin{array}{c} O \\ -C - CH_2CH_3 \end{array} $						
	OH OH							
	c) $\langle \bigcirc \rangle$ - CH ₂ CH ₂ CH ₃		d) $\langle \bigcirc \rangle$ -CH-CH ₂ CH ₃					
24.	Low density polythene (LDP) is used in the insulation of electricity carrying wires and manufacture of flexible pipes and squeeze bottles because— a) It is tough, hard and rigid. b) It is chemically inert, tough, flexible and poor conductor of electricity. c) It is very tough, good conductor of electricity and flexible. d) It is chemically inert, very soft, water absorbent and poor conductor of heat.							
25.	Fill up the blanks with suitable reagents to show synthesis of poly vinyl chloride							
	Cl V							
		$CH \equiv CH \xrightarrow{X} CH_2 = CHCl \xrightarrow{Y} \xrightarrow{(CH_2 - CHCl - CH)_n}$						
	a) $X = HCl$, $HgCl_2$; $Y = Polymerisation$, peroxide							
	c) $X = HCl$, $CuCl$; $Y = H$	I_2O, H'	d) $X = HCl$, $HgCl_2$; $Y = Pt$, high pressure				
		V						