RAMAKRISHNA MISSION VIDYAMANDIRA Belur Math, Howrah - 711 202 # **ADMISSION TEST – 2015** ### **CHEMISTRY (Honours)** Date : 18-06-2015 Full Marks : 50 Time: $11\cdot00 \text{ a.m} - 12\cdot30 \text{ p.m}$ #### **Instructions for the candidate** Answer all the questions given below. Each question carries 2 marks. Tick (\checkmark) the correct option. The tick must be very clear — if it is smudgy or not clear, no marks will be awarded. Name of the student: Application No.: $$1. \quad P(C_8H_9NO) \xrightarrow{\quad Br_2 \quad } Q \text{ (Major)} \xrightarrow{\quad HCl \quad } R \xrightarrow{\quad NaNO_2/H_2SO_4 \quad } S \xrightarrow{\quad CuBr \quad } Br \xrightarrow{\quad CO} Br \xrightarrow{\quad Br_2 \quad } Br \xrightarrow{\quad CO} Br \xrightarrow{\quad Rr_2 \xrightarrow{\quad$$ From the above reaction sequence the starting compound P is 2. The correct name of the following compound is - a) (S) 1 Bromo 2 chloroethanol - b) (R) 1 Bromo 2 Chloroethanol - c) (R) 1 Chloro 2 bromoethanol - d) (S) 1 Chloro 2 bromoethanol - 3. Which one of the following is the correct order of acidity - a) Picric acid \quad Paranitrophenol \quad Metanitrophenol \quad Phenol - b) Picric acid \(\rightarrow \) Metanitrophenol \(\rightarrow \) Paranitrophenol \(\rightarrow \) Phenol - c) Paranitrophenol \rightarrophenol \rightarrophenol \rightarrophenol \rightarrophenol \rightarrophenol \rightarrophenol - d) None of these 4. 2 – Bromopropane $$\xrightarrow{\text{aq}}$$ (A) $\xrightarrow{\text{Cu}}$ (B) $\xrightarrow{\text{Ba(OH)}_2}$ (C) $\xrightarrow{\text{I}_2}$ (D) (Which gives iodoform test). The name of (D) is a) 4 - Methylpent - 3 - en - 2 - one b) 2 - Methylpent - 2 - en - 4 - one c) 3 – Hexenone d) Cyclohexanone (1) $CH_3 - C \equiv C - H + CH_3MgBr \rightarrow CH_4 + A \xrightarrow{PhCHO} B \xrightarrow{Lindlar's catalyst} C$; The structure of C is - An organic compound on ozonolysis gives 4 Methylheptane 2, 6 dione. The name of the organic compound is - a) 4-Methylhepta-1, 5-diene b) 1, 2, 4-Trimethylcyclopentene c) 4-Methylhepta-2, 5-diene - d) None of these - The correct method to prepare the following compound (A) is 8. - $\frac{\text{CH}_3\text{CH}_2\text{CH}_2\text{COCl}}{\text{AlCl}_3} \rightarrow \frac{\text{Zn-Hg}}{\text{HCl}} \rightarrow \frac{\text{HNO}_3}{\text{H}_2\text{SO}_4} \rightarrow$ b) - $\frac{\text{CH}_3\text{CH}_2\text{CH}_2\text{COCl}}{\text{AlCl}_3} \rightarrow \frac{\text{HNO}_3}{\text{H}_2\text{SO}_4} \rightarrow \frac{\text{Zn-Hg}}{\text{HCl}}$ - $\xrightarrow{\text{CH}_3\text{CH}_2\text{COCl}} \xrightarrow{\text{KMnO}_4} \xrightarrow{\text{HNO}_3} \xrightarrow{\text{H}_2\text{SO}_4} \xrightarrow{\text{H}_2\text{SO}_4}$ - The correct order of hybridisation of the central atom in the following species NH₃, [PtCl₄]²⁻, PCl₅ and BCl₃ is - a) dsp^2 , dsp^3 , sp^2 , sp^3 - b) sp^3 , dsp^2 , dsp^3 , sp^2 - c) dsp^2, sp^2, sp^3, dsp^3 d) sp^3, sp^2, dsp^3, dsp^2 - 10. The size of the ions changes in the order - a) $Cl^{7+} > Si^{4+} > Mg^{2+} > Na^{+}$ b) $Na^+ > Mg^{2+} > Si^{4+} > Cl^{7+}$ c) $Cl^{7+} > Na^{+} > Mg^{2+} > Si^{4+}$ - d) $Mg^{2+} > Na^+ > Cl^{7+} > Si^{4+}$ - 11. What is the equivalent weight of KMnO₄ when acts as an oxidising agent in alkaline, neutral and acidic medium (Atomic weight of potassium and Manganese are 39.0 and 55 respectively) - a) 158, 39·50, 31·60 - b) 158, 52·70, 31·60 - c) 79, 39.50, 31.60 - d) 79, 52 \cdot 7, 31 \cdot 60 - 12. What is the pH of the solutions of (i) 1×10^{-3} M HCl and (ii) 1×10^{-3} M H₂SO₄? - a) 3 and 3 - b) 3 and 2.699 - c) 3 and 3·1 - d) 3·1 and 3·1 - 13. If the ionisation energy of hydrogen atom is 13.6ev, the expected 3rd ionisation energy of lithium atom is - a) 122·4 eV - b) 40.6 eV - c) 81.6 eV - d) None of these - 14. Which of the following reactions will not occur spontaneously? - a) $I_2 + 2Br^- \rightarrow 2I^- + Br_2$ b) $F_2 + 2Cl^- \rightarrow 2F^- + Cl_2$ c) $Br_2 + 2I^- \rightarrow 2Br^- + I_2$ d) $2I^- + Cl_2 \rightarrow 2Cl^- + I_2$ - 15. The wavelength of the second line in the visible spectrum of atomic hydrogen is (Given, $R_H = 1.096776 \times 10^7 \text{m}^{-1}$) - a) 4.86×10^{-7} m - b) 9.72×10^{-7} m - c) 2.42×10^{-7} m - d) None of these - 16. A 50 ml solution of pH = 1 mixed with 50 ml solution of pH = 2. The pH of the resulting mixture will be nearly - a) 1.26 b) 1.5 c) 1.76 d) None of these | 17. | Two flasks A and B have equal volumes. A is maintained at 300K and B at 600K; while A contains H_2 gas and B has an equal mass of CH_4 gas. Assuming ideal behaviour for both the gases find out the correct | |-----|--| | | answer a) B flask has the molecules with faster velocity | | | b) B flask has greater molar kinetic energyc) B flask is having greater no. of collisions with the wallsd) B flask contains greater no. of molecules | | 18. | Which one of the following is incorrect? | | | a) The gas with the equation $\left(P + \frac{a}{v^2}\right)v = RT$ can be liquefied | d) Average speed of molecules of a gas in a container moving only in one dimension is zero Acetic acid = $-0.5 \,\mathrm{MJ} \,\mathrm{mol}^{-1}$; Carbon-di-oxide = $-0.4 \,\mathrm{MJ} \,\mathrm{mol}^{-1}$; Water = $-0.3 \,\mathrm{MJ} \,\mathrm{mol}^{-1}$ 20. Which of the following changes have no effect on the chemical equilibrium in the thermal decomposition b) an increase in the amount of the initial substance 21. Aqua regia, a 3:1 mixture (by volume) of concentrated HCl and HNO₃ was developed by alchemists as a 22. A solution with a volume of 1 dm³ is saturated with PbI₂. The concentration of Γ ions is 2.7 mol dm⁻³. The 23. 3.00 mol of CO_2 gas expands isothermally (in thermal contact with the surroundings; t = 15°C) against a fixed external pressure of 1.00 bar. The initial and final volume of gas are 10 dm^3 and 30dm^3 , respectively. c) -0.2 MJ mol^{-1} c) 1.3×10^{25} c) 9.8×10^{-9} $a) \ \Delta S_{sys} > 0; \\ \Delta S_{surr} = 0 \qquad b) \ \Delta S_{sys} > 0; \\ \Delta S_{surr} < 0 \qquad c) \ \Delta S_{sys} < 0; \\ \Delta S_{surr} > 0 \qquad d) \ \Delta S_{sys} = 0; \\ \Delta S_{surr} = 0 \qquad d$ d) $-2 \cdot 1 \text{ MJ mol}^{-1}$ d) None of these d) 4.9×10^{-9} - 24. Which of the following statements is incorrect? - a) Molecularity and order have same meaning for the elementary reactions - b) Pre-exponential factor for a reaction is temperature independent b) T_C is the maximum temperature at which a gas cannot be liquefied 19. The following standard enthalpies of formation for some molecules are given as means to dissolve gold. $Au(s) + NO_3^+(aq) + Cl^-(aq) = AuCl_4^-(aq) + NO_2(g)$ Gold is too noble to react with HNO₃. Two half reactions are b) 2.6×10^{25} b) 2.0×10^{-8} $AuCl_{4}^{-}(aq) + 3e^{-} = Au(s) + 4Cl^{-}$ $E^{\circ} = 1.0V$ The formation constant of $AuCl_4^-$ from Au^{3+} and Cl^- is b) -0.9 MJ mol^{-1} d) a change in CO₂ concentration $E^{\circ} = 1.5V$ c) The Boyle temp for a van der Waals gas is defined as $T_B = \frac{a}{Rh}$ The ΔH° of combustion of acetic acid is a) $+0.9 \text{ MJ mol}^{-1}$ a) temp. elevation c) pressure decrease $Au^{3+}(aq) + 3e^{-} = Au(s)$ solubility product of PbI2 is of CaCO₃? a) 5.2×10^{25} a) 3.6×10^{-6} - c) Acid catalyzed ester hydrolysis reaction is a pseudo 1st order reaction - d) For gas phase reaction, the increment in internal pressure increased the reaction rate - 25. One mole of an ideal monatomic gas at 27°C expands adiabatically from 1 lit to 10 lit, against constant pressure, P. Which one is not correct? - a) Adiabatic reversible work done is temperature dependent - b) $W_{ad} = -P(V_2 V_1)$ c) Adiabatic reversible work is equal to irreversible one - d) Entropy change for system is zero # **FOR ROUGH WORK**