B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2017
 THIRD YEAR [BATCH 2015-18]

Date : 19/12/2017
Time : $11 \mathrm{am}-3 \mathrm{pm}$

[Use a separate Answer Book for each Group]

Group - A

Answer any five questions from Question Nos. 1 to 8 :

1. a) Let G be a group of order 8 and x be an element of G of order 4. Prove that $x^{2} \in Z(G)$.
b) If H be a subgroup of a cyclic group G, then prove that the quotient group G / H is cyclic. Is the converse true? Justify your answer.
c) Let α and β be two group homomorphisms from G to G^{\prime} and let $H=\{g \in G \mid \alpha(g)=\beta(g)\}$. Prove or disprove H is a subgroup of G.
2. a) Let G be an abelian group of order 8 . Prove that $\phi: G \rightarrow G$ defined by $\phi(x)=x^{3} \forall x \in G$ is an isomorphism.
b) Let G be a group and A, B are subgroups of G. If (i) $G=A B$, (ii) $a b=b a$ for all $a \in A, b \in B$ and (iii) $\mathrm{A} \cap \mathrm{B}=\{\mathrm{e}\}$ prove that G is an internal direct product of A and B. Hence show that Klein's 4 -group is isomorphic to the internal direct product of a cyclic group of order 2 with itself.
c) Write class equation for a finite group G.
3. a) If G is a finite commutative group of order n such that n is divisible by a prime p, then prove that G contains an element of order p.
b) Prove that no group of order 56 is simple.
4. a) State and prove Sylow's $3^{\text {rd }}$ theorem.
b) If $\mathrm{o}(G)=p^{n}$ where p is prime, $n>0$; prove that $Z(G)$ is nontrivial.
c) Use (b) above to show that a group of order p^{2} where p is prime is abelian.
5. a) Find all ideals of the ring ($\square,+, \cdot)$.
b) Let $T_{2}(\square)=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \square\right\}$ be the ring of all upper triangular matrices over \square. Prove that $I=\left\{\left.\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \right\rvert\, a \in \square\right\}$ is an ideal of $T_{2}(\square)$. Find the quotient ring $T_{2}(\square) / I$.
c) Find all automorphisms of the field \square.
6. a) Define a Euclidean Domain. Give example of it. Prove that every field is a Euclidean domain.
b) In an integral domain, prove that every prime element is irreducible.
c) In \square_{6}, prove that [3] is prime, but not irreducible.
7. a) Prove that in a UFD, every irreducible element is prime.
b) Show that in the integral domain $\square[i \sqrt{5}], 3$ is irreducible but not prime.
8. a) Let R be a commutative ring with 1 . Prove that every proper ideal of R is contained in a maximal ideal of R.
b) Let I be a prime ideal in R and $a, b \in R-I$ then prove that there exists $c \in R$ such that $a c b \in R-I$.
c) In $C([0,1])$, let $M_{\frac{1}{2}}=\left\{f \in C([0,1]): f\left(\frac{1}{2}\right)=0\right\}$. Show that $M_{\frac{1}{2}}$ is a maximal ideal of $C([0,1])$.

Group-B

Answer any six questions from Question Nos. 9 to 17:

9. a) Calculate the partial derivatives $f_{x y}$ and $f_{y x}$ at the point $(1,2)$ for the function

$$
f(x, y)= \begin{cases}(x-1)(y-2)^{2} & , \text { if } y>2 \\ -(x-1)(y-2)^{2} & , \quad \text { if } y \leq 2\end{cases}
$$

b) Find the double and repeated limits of the function $f(x, y)=\left\{\begin{array}{cl}(x+y) \sin \frac{1}{x} & , \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{array}\right.$ as x and y tend to 0 .
10. Let $\mathrm{f}: \mathrm{U} \rightarrow \square$, where $\mathrm{U} \subseteq \square^{2}$ is an open set. Let $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \in \mathrm{U}$ and $\mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies
i) $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}$ exists in some neighbourhood of $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
ii) $\frac{\partial^{2} f}{\partial x \partial y}$ is continuous at $\left(x_{0}, y_{0}\right)$.

Show that $\frac{\partial^{2} f}{\partial y \partial x}$ exists at $\left(x_{0}, y_{0}\right)$ and $\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)$.
11. If $\mathrm{u}^{3}=\mathrm{xyz}, \frac{1}{\mathrm{v}}=\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}, \mathrm{w}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$, prove that

$$
\begin{equation*}
\frac{\partial(\mathrm{u}, \mathrm{v}, \mathrm{w})}{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}=\frac{-\mathrm{v}(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})(\mathrm{x}-\mathrm{y})(\mathrm{x}+\mathrm{y}+\mathrm{z})}{3 \mathrm{u}^{2} \mathrm{w}(\mathrm{yz}+\mathrm{zx}+\mathrm{xy})} . \tag{5}
\end{equation*}
$$

12. Show that the function $f(x, y)$ defined by

$$
\begin{aligned}
f(x, y) & =\frac{x y}{\sqrt{x^{2}+y^{2}}}, & & x^{2}+y^{2} \neq 0 \\
& =0, & & x=y=0
\end{aligned}
$$

is continuous, possesses partial derivatives of first order but is not differentiable at origin.
13. a) Apply Lagrange's M.V.T. for a function $f(x, y)$ of two variables given by $f(x, y)=\sin \pi x+\cos \pi y$ to express $f(1 / 2,0)-f(0,-1 / 2)$ in terms of first order partial derivatives of f and show that \exists a real no. θ where $0<\theta<1$ s.t. $\frac{4}{\pi}=\cos \frac{\pi \theta}{2}+\sin \frac{\pi}{2}(1-\theta)$.
b) Find the Taylor expansion of $\cos (x+y)$ upto second degree terms (excluding remainder) about the point $\left(1, \frac{\pi}{2}\right)$.
14. a) Find the maximum value of the function $f(x, y)=\sin x \sin y \sin (x+y)$ defined in the triangular region $0 \leq x \leq \pi, 0 \leq y \leq \pi, 0 \leq x+y \leq \pi$.
b) Check the independence of the functions $f_{1}(x, y, z)=-x+y+z, f_{2}(x, y, z)=x-y+z$ and $f_{3}(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y$. If they are dependent, find the relation between them.
15. Let $f: \square^{3} \rightarrow \square^{2}$ be a function of the form $f(x, y, z)=\left(f_{1}(x, y, z), f_{2}(x, y, z)\right)$. Show that f is a differentiable function iff f_{1}, f_{2} are differentiable.
16. Let $f(x, y)=y^{2}-y x^{2}-2 x^{5}$. Check whether it is possible to solve $f(x, y)=0$ uniquely in some neighbourhood of $(1,-1)$. If yes, then find the solution and $\frac{d y}{d x}$ at $(1,-1)$.
17. a) State the sufficient condition for the continuity of a function $f: \square^{2} \rightarrow \square$.
b) If $f(x, y)=\left\{\begin{array}{ccc}\frac{2 x y}{x^{2}+y^{2}}, & \text { if } x^{2}+y^{2} \neq 0 \\ 0, & \text { otherwise }\end{array}\right.$ show that both the first order partial derivatives exists at $(0,0)$ but $f(x, y)$ is discontinuous there. Does this violate the sufficient condition for the continuity as stated in problem (17a)?

Answer any four questions from Question Nos. 18 to 23 :
18. Define a function of bounded variation. Show that the function $f:[0,1] \rightarrow \square$ defined by

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\mathrm{x} \sin \frac{\pi}{\mathrm{x}}, & & \mathrm{x} \in(0,1] \\
& =0, & & x=0
\end{aligned}
$$

is a bounded function but it is not a function of bounded variation.
19. Show that the plane curve γ defined by $\gamma(x)=(f(x), g(x)), x \in[0,1]$
where $f(x)=x^{2} \quad 0 \leq x \leq 1$
$\& g(x)=x^{2} \sin \frac{1}{x}, \quad 0<x \leq 1$

$$
=0, \quad x=0
$$

is rectifiable on $[0,1]$
20. State Bonnet's form of $2^{\text {nd }}$ M.V.T. of integral calculus. Use it to show that $\left|\int_{a}^{b} \frac{\sin x}{x} d x\right| \leq \frac{2}{a}$ if $\mathrm{b}>\mathrm{a}>0$.
21. a) Evaluate : $\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} e^{t^{2}} d t}{1-e^{x^{2}}}$.
b) A function f is defined over the closed interval $[1,3]$ as follows

$$
\begin{align*}
\mathrm{f}(\mathrm{x})=1, & 1 \leq \mathrm{x}<2 \\
& =2, \tag{3}\\
& 2 \leq \mathrm{x} \leq 3
\end{align*}
$$

Verify whether $\int_{a}^{b} f(x) d x=(b-a) f(\xi)$ holds here for some $\xi \in[a, b]$.
22. Show that $\frac{\pi^{3}}{96}<\int_{-\pi / 2}^{\pi / 2} \frac{\mathrm{x}^{2}}{5+3 \sin \mathrm{x}} \mathrm{dx}<\frac{\pi^{3}}{24}$.
23. A function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \square$ be integrable on $[\mathrm{a}, \mathrm{b}]$. The function F is defined by $\mathrm{F}(\mathrm{x})=\int_{\mathrm{a}}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}$, $x \in[a, b]$. Prove that if f is continuous at $c \in[a, b]$ then F is differentiable at c and $F^{\prime}(c)=f(c)$.

