RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2017

THIRD YEAR [BATCH 2015-18]

: 19/12/2017

: 11 am – 3 pm Time

Date

MATHEMATICS [Honours] Paper : V

Full Marks: 100

[Use a separate Answer Book for each Group]

<u>Group – A</u>

Answer <u>ar</u>	<u>ny five</u> qu	<i>uestions from</i>	n <u>Question</u>	Nos.	1 to 8	:
------------------	-------------------	----------------------	-------------------	------	--------	---

- a) Let G be a group of order 8 and x be an element of G of order 4. Prove that $x^2 \in Z(G)$. 1.
 - If H be a subgroup of a cyclic group G, then prove that the quotient group G/H is cyclic. Is b) the converse true? Justify your answer.
 - β be two group homomorphisms from G'c) Let and G to and let α $H = \{g \in G \mid \alpha(g) = \beta(g)\}$. Prove or disprove H is a subgroup of G. 3+5+2
- a) Let G be an abelian group of order 8. Prove that $\phi: G \to G$ defined by $\phi(x) = x^3 \forall x \in G$ is an 2. isomorphism.
 - b) Let G be a group and A, B are subgroups of G. If (i) G = AB, (ii) ab = ba for all $a \in A$, $b \in B$ and (iii) $A \cap B = \{e\}$ prove that G is an internal direct product of A and B. Hence show that Klein's 4-group is isomorphic to the internal direct product of a cyclic group of order 2 with itself.
 - c) Write class equation for a finite group G.
- 3. a) If G is a finite commutative group of order n such that n is divisible by a prime p, then prove that G contains an element of order p.
 - b) Prove that no group of order 56 is simple.
- State and prove Sylow's 3rd theorem. 4. a)
 - b) If $o(G) = p^n$ where p is prime, n > 0; prove that Z(G) is nontrivial.
 - Use (b) above to show that a group of order p^2 where p is prime is abelian. 5+3+2c)
- Find all ideals of the ring $(\Box, +, \cdot)$. 5. a)

b) Let
$$T_2(\Box) = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} | a, b, c \in \Box \right\}$$

be the ring of all upper triangular matrices over \Box . Prove that $I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} | a \in \Box \right\}$ is an ideal of $T_2(\Box)$. Find the quotient ring $T_2(\Box)/I$.

- c) Find all automorphisms of the field \Box .
- 6. a) Define a Euclidean Domain. Give example of it. Prove that every field is a Euclidean domain.
 - b) In an integral domain, prove that every prime element is irreducible.
 - c) In \square_6 , prove that [3] is prime, but not irreducible.

2+3+5

4 + 3 + 3

[5×10]

3+5+2

5+5

- 7. a) Prove that in a UFD, every irreducible element is prime.
 - b) Show that in the integral domain $\Box \left[i\sqrt{5} \right]$, 3 is irreducible but not prime.
- 8. a) Let R be a commutative ring with 1. Prove that every proper ideal of R is contained in a maximal ideal of R.
 - b) Let *I* be a prime ideal in *R* and $a, b \in R-I$ then prove that there exists $c \in R$ such that $acb \in R-I$.

c) In
$$C([0,1])$$
, let $M_{\frac{1}{2}} = \left\{ f \in C([0,1]) : f\left(\frac{1}{2}\right) = 0 \right\}$. Show that $M_{\frac{1}{2}}$ is a maximal ideal of $C([0,1])$.
5+2+3

<u>Group – B</u>

Answer <u>any six</u> questions from <u>Question Nos. 9 to 17</u>:

9. a) Calculate the partial derivatives f_{xy} and f_{yx} at the point (1, 2) for the function

$$f(x, y) = \begin{cases} (x-1)(y-2)^2 &, & \text{if } y > 2 \\ -(x-1)(y-2)^2 &, & \text{if } y \le 2 \end{cases}$$

b) Find the double and repeated limits of the function $f(x, y) = \begin{cases} (x+y)\sin\frac{1}{x} & , & \text{if } x \neq 0 \\ 0 & , & \text{if } x = 0 \end{cases}$

as x and y tend to 0.

10. Let $f: U \to \Box$, where $U \subseteq \Box^2$ is an open set. Let $(x_0, y_0) \in U$ and f(x, y) satisfies

- i) $\frac{\partial f}{\partial x}$ exists in some neighbourhood of (x_0, y_0)
- ii) $\frac{\partial^2 f}{\partial x \partial y}$ is continuous at (x_0, y_0) .

Show that
$$\frac{\partial^2 f}{\partial y \partial x}$$
 exists at (x_0, y_0) and $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$. [5]

11. If
$$u^3 = xyz$$
, $\frac{1}{v} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$, $w^2 = x^2 + y^2 + z^2$, prove that
 $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{-v(y - z)(z - x)(x - y)(x + y + z)}{3u^2w(yz + zx + xy)}$.
[5]

12. Show that the function f(x,y) defined by

f(x,y) =
$$\frac{xy}{\sqrt{x^2 + y^2}}$$
, x² + y² ≠ 0
= 0, x = y = 0

is continuous, possesses partial derivatives of first order but is not differentiable at origin. [1+2+2]

[6×5]

[2]

[3]

- 13. a) Apply Lagrange's M.V.T. for a function f(x,y) of two variables given by $f(x, y) = \sin \pi x + \cos \pi y$ to express $f(\frac{1}{2}, 0) - f(0, -\frac{1}{2})$ in terms of first order partial derivatives of f and show that \exists a real no. θ where $0 < \theta < 1$ s.t. $\frac{4}{\pi} = \cos \frac{\pi \theta}{2} + \sin \frac{\pi}{2} (1-\theta)$. [2]
 - b) Find the Taylor expansion of cos (x+y) upto second degree terms (excluding remainder) about the point $\left(1,\frac{\pi}{2}\right)$.

[3]

[4×5]

- Find the maximum value of the function $f(x, y) = \sin x \sin y \sin (x + y)$ defined in the 14. a) triangular region $0 \le x \le \pi$, $0 \le y \le \pi$, $0 \le x + y \le \pi$. [3]
 - Check the independence of the functions $f_1(x, y, z) = -x + y + z$, $f_2(x, y, z) = x y + z$ and b) $f_3(x, y, z) = x^2 + y^2 + z^2 - 2xy$. If they are dependent, find the relation between them. [2]
- 15. Let $f:\square^3 \to \square^2$ be a function of the form $f(x, y, z) = (f_1(x, y, z), f_2(x, y, z))$. Show that f is a differentiable function iff f_1 , f_2 are differentiable. [5]
- 16. Let $f(x,y) = y^2 yx^2 2x^5$. Check whether it is possible to solve f(x,y) = 0 uniquely in some neighbourhood of (1, -1). If yes, then find the solution and $\frac{dy}{dx}$ at (1, -1). [5]
- State the sufficient condition for the continuity of a function $f:\square^2 \rightarrow \square$. 17. a) [1]

b) If
$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{, if } x^2 + y^2 \neq 0\\ 0 & \text{, otherwise} \end{cases}$$

show that both the first order partial derivatives exists at (0,0) but f(x,y) is discontinuous there. Does this violate the sufficient condition for the continuity as stated in problem (17a)? [4]

Answer any four questions from Question Nos. 18 to 23 :

18. Define a function of bounded variation. Show that the function $f:[0,1] \rightarrow \Box$ defined by

$$f(x) = x \sin \frac{\pi}{x}, \quad x \in (0,1]$$

= 0, $x = 0$
is a bounded function but it is not a function of bounded variation. [2+1+2]

is a bounded function but it is not a function of bounded variation.

19. Show that the plane curve γ defined by $\gamma(x) = (f(x), g(x)), x \in [0,1]$

where
$$f(x) = x^2$$
 $0 \le x \le 1$
& $g(x) = x^2 \sin \frac{1}{x}, \ 0 < x \le 1$
= 0, $x = 0$
is rectifiable on [0,1] [5]

20. State Bonnet's form of 2nd M.V.T. of integral calculus. Use it to show that $\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \le \frac{2}{a}$ if

b > a > 0.

2

1. a) Evaluate:
$$\lim_{x \to 0} \frac{x \int_{0}^{x} e^{t^{2}} dt}{1 - e^{x^{2}}}.$$
 [2]

[2+3]

[3]

b) A function f is defined over the closed interval [1, 3] as follows $f(x) = 1, 1 \le x < 2$ $= 2, 2 \le x \le 3$ Verify whether $\int_{a}^{b} f(x) dx = (b-a)f(\xi)$ holds here for some $\xi \in [a,b]$.

22. Show that
$$\frac{\pi^3}{96} < \int_{-\pi/2}^{\pi/2} \frac{x^2}{5+3\sin x} dx < \frac{\pi^3}{24}$$
. [5]

23. A function $f:[a,b] \rightarrow \Box$ be integrable on [a,b]. The function F is defined by $F(x) = \int_{0}^{x} f(t) dt$,

 $x \in [a,b]$. Prove that if f is continuous at $c \in [a,b]$ then F is differentiable at c and F'(c) = f(c). [5]

_____ × _____