RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2019

FIRST YEAR (BATCH 2018-21)

MATH FOR INDUSTRIAL CHEMISTRY (General)

: 24-05-2019 Date : 11.00 am - 2.00 pm Time

Paper : II

Full Marks: 75

2

5

3

2

[Use a separate Answer book for each group]

Group-A

Answer any three questions from questions no 1 to 5 [3×5]

- Find a unit vector perpendicular to both the vectors $\vec{\alpha} = 2\hat{i} 3\hat{j}$ and $\vec{\beta} = -\hat{i} + 2\hat{j} 3k$. 3 1. a)
 - Find the value of 'a' such that the vectors $\vec{\alpha} = a\hat{i} + 2\hat{j} 3k$ and $\vec{\beta} = \hat{i} 4k$ are perpendicular. b)

2. Given three vectors
$$\vec{u}, \vec{v}, \vec{w}$$
 with $V = \vec{u} \cdot (\vec{v} \times \vec{w}) \neq 0$. Define three new vectors $\vec{a} = \frac{(v \times w)}{V}$

$$\vec{b} = \frac{\left(\vec{w} \times \vec{u}\right)}{V}$$
, $\vec{c} = \frac{\left(\vec{u} \times \vec{v}\right)}{V}$. Verify that $\vec{a} \cdot \left(\vec{b} \times \vec{c}\right) = \frac{1}{V}$.

If $\vec{a}, \vec{b}, \vec{c}$ be any three non-coplanar vectors then prove that, any vector \vec{r} can be written as 3. $\vec{r} = \begin{bmatrix} \vec{r} & \vec{r} & \vec{r} \\ \vec{r} & \vec{b} & \vec{c} \\ \hline \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \vec{a} + \begin{bmatrix} \vec{a} & \vec{r} & \vec{c} \\ \vec{a} & \vec{r} & \vec{c} \\ \hline \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \vec{b} + \begin{bmatrix} \vec{a} & \vec{b} & \vec{r} \\ \vec{a} & \vec{b} & \vec{r} \\ \hline \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \vec{c} .$

In a triangle ABC let $\overrightarrow{BC} = \overrightarrow{a}, \overrightarrow{CA} = \overrightarrow{b}$ and $\overrightarrow{AB} = \overrightarrow{c}$. Prove, by vector method, that 4. a) $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ where a,b,c are the lengths of the sides BC,CA and AB respectively. 3

b) Prove that
$$\begin{vmatrix} \vec{b} - \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a} \end{vmatrix}$$
 is perpendicular to \vec{a} . 2

- (a) A force of magnitude 5 units acts along the line joining the points A(3,-1,-6) and B(8,4,-1). Find 5. the torque of the force about the point (1,2,-3).
 - (b) Find, by vector method, the volume of the tetrahedron ABCD with vertices A(1,1,-1), B(3,-2,-2), C(5,5,3) and D(4,3,2)

[2×5]

6. Show that $\int \frac{x^{n-1}}{f(x)} dx = \sum_{r=1}^{n} \frac{(a_r)^{n-1}}{f'(a_r)} \log(x - a_r) \text{ where } f(x) = \prod_{r=1}^{n} (x - a_r) \quad (a_i \neq a_k \text{ if } i \neq k)$

Obtain the reduction formula for $\int \frac{\sin^m x}{\cos^n x} dx$, where m, n are positive integers and hence evaluate 7.

$$\int \frac{\sin^3 x}{\cos^2 x} dx \quad . \tag{3+2}$$

8. Find
$$\lim_{n \to \infty} \frac{1}{n} \left[1 + \left(\frac{2^2}{n^2} + 1 \right) + \left(\frac{4^2}{n^2} + 1 \right) + \dots + \left(\frac{(2n-2)^2}{n^2} + 1 \right) \right]$$

9. (a) Evaluate : $\int_{-\frac{1}{2}}^{\frac{1}{4}} \log(1 + \tan \theta) d\theta$. (3)

(b) State Fundamental theorem of integral calculus .

Group-B

Answer any five questions from questions no 10 to 17

(2)

[5×5]

- 10. Use Cauchy's general principle of convergence to show that the sequence $\{u_n\}$, where $u_n = \sum_{i=1}^{n} \frac{1}{i}$ is not convergent.
- 11. Show that every convergent sequence of real numbers is bounded . Is the converse is true ? Justify your answer .
- 12. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\sin \frac{1}{n}}{\sqrt{n}}$.
- 13. Test that the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$.
- 14. State Rolle's Theorem . Verify the theorem for the function $f:[2,3] \rightarrow \mathbb{R}$ defined by $f(x) = x^2 5x + 10$.
- 15. Evaluate : $\lim_{x \to 0} \frac{e^{x} e^{-x} 2\log(1+x)}{x \sin x} .$
- 16. Prove that the function $f(x, y) = x^2 2xy + y^2 + x^4 + y^4$ has a minimum at the origin.
- 17. a) Is it possible to evaluate $\lim_{x\to 0} \frac{\sin x}{x}$ using L' Hospital's Rule ? Justify.
 - b) Determine the maximum and minimum value of $f(x, y) = x^2 + y^2 2x 2y$ subject to the constraint x+2y = 4 using method of Lagrange multipliers.

Group-C

Answer <u>any five</u> questions from <u>questions no 18 to 25</u> $[5\times 5]$

18. An elevator starts with 6 persons and stops at 8 floors of a building .What is the probability that no two person got down at the same floor ?

- 19. Let A, B be two events so that $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(B/A) = \frac{1}{3}$. Then
 - i) are A, B independent? Justify.
 - ii) are A, B mutually exclusive? Justify.
 - iii) find $P(A \cup B)$.
- 20. The probabilities of solving a problem by three students A, B, C are $\frac{3}{7}$, $\frac{3}{8}$, $\frac{1}{3}$ respectively. If all of them try independently, find the probability that the problem could be solved by one person only.
- 21. A seven digit number is formed by the digits 0, 1, 2, 3, 4, 5, 6 (without repetition). Find the probability that the number formed is divisible by 4.
- 22. Find the 'mean' and 'variance' of Poission distribution.
- 23. The chance of a person hitting a target is $\frac{1}{3}$. How many times must be fire so that the probability of hitting the target at least once is more than 0.9.
- 24. 10 Fair coins are tossed simultaneously. Find the probability of gettingi) at least six heads .ii) at most six heads .
- 25. In a normal distribution, 46% of the items are over 40 and 90% are under 75. Find the mean and standard deviation of the distribution. Given that, $\int_{-\infty}^{x} (2\pi)^{-\frac{1}{2}} e^{-\frac{t^2}{2}} dt = 0.54$ and 0.90 for x=0.10 and x=1.28 respectively.

_____ X _____

2

3