RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

M.A./M.SC. SECOND SEMESTER EXAMINATION, MAY 2012

FIRST YEAR APPLIED CHEMISTRY

Paner · IX

Date : 30/05/2012

Time	e : :	11 am – 1 pm	Paper: IX	Full Ma	rks : 50		
1.	Che	pose the right option (any ten):			[10×1]		
1.		The polymerization method which gives P	DI close to uni	ty is	[IO/I]		
	11)	a) anionic b) condensation		olymerization			
	B)	T_g of raw natural rubber is:	c) radical p				
	D)	a) -70° C b) -10° C	c) 0^{0} C	d) $+30^{0}$ C.			
	C)	AIBN is an initiator used in the free rac	· · · · · · · · · · · · · · · · · · ·	,).		
	Ο)	ng MMA concentration unchanged th					
	rate of propagation						
		a) is doubled	b) increase:	s by a factor of $2^{1/2}$			
		c) is reduced by half		s by a factor of $2^{1/2}$.			
	D)	For the copolymerization of MMA with vi		nd			
	_,	to be 10 and 0.1 respectively. The resulting					
		a) an alternating copolymer	b) an ideal				
		c) a block copolymer	*	ed copolymer.			
	E) Crystallinity of three different types of PE follows the order:						
	_,	a) HDPE>LLDPE>LDPE		HDPE>LLDPE			
		c) HDPE>LDPE>LLDPE	,	HDPE>LDPE.			
	F)	The notched izod impact strength of ABS,	<i>'</i>				
	- /	a) PC <abs<pp<pf abs<pf<pc<pp<="" b)="" td=""><td></td><td></td><td></td></abs<pp<pf>					
	G)	I to get hardened after a length of tim	e.				
	-,	The observation is most likely due to					
		a) chain scission	b) loss of p	lasticizer			
		c) loss of UV stabilizer	•	nermal stabilizer.			
	H) Based on the solubility parameter (δ) the best solvent for polyethylene (δ - 16.2 MPa ^{1/2}						
		$\delta = 18.3 \text{ MPa}^{1/2}$)					
		a) THF (δ = 20.3 MPa ^{1/1}) c) acetone (δ = 19.9 MPa ^{1/2})		$1 (\delta = 29.7 \text{ MPa}^{1/2}).$			
	I) If η represents viscosity of polymer solution and η_0 represents viscosity of pure solvent t						
		specific viscosity (η_{sp}) of the polymer solution is expressed as:					
		a) η/η_0 b) $(\eta/\eta_0)-1$	c) $(\eta_0/\eta)-1$	d) $\eta_{0/}$ η .			
	J)	A small molecule is eliminated as a by-pro	, , , , , , , , , , , , , , , , , , ,				
		a) polyethylene	_	ylene terephthalate)			
		c) styrene-butadiene copolymer		fluoroethylene.			
	K)	The T _g is governed by	, 1	·			
	,	a) translational motion of entire molecule					
		S					
		S					
	L)	Which of the following monomers is used	to synthesise p	oly (vinyl alcohol)-			
		a) CH ₃ CH ₂ OH b) CH ₂ =CH(OH)	c) CH ₂ =CH	I-O-CO-CH ₃ d) CH ₂ =CH.COOH.			
2.	Ma	tch the following (any five):			[5×2]		
۷٠		a) X-ray diffraction	i) Fun	ctional groups			
	11)	b) Differential thermal analysis		stallinity			
		c) Infrared spectroscopy		phology			
		d) Microscopy	iv) Ent	1 0			

B)	a) Benzyl lithium	i)	Emulsio	n polymerization				
	b) Tropylium chloride	ii)	Anionic	polymerization				
	c) AIBN	iii)	Cationic	polymerization				
	d) $(NH_4)_2S_2O_8$	iv)	Radical	polymerization				
C)	a) Bakelite	i)	Bathroo	m doors				
	b) E-PVC	ii)	Toys					
	c) HIPS	iii)	Electrica	al switches				
	d) PC	iv)	Compac	t Disc				
D)	a) M _n	i)	Viscome	etry				
	b) M _w	ii)	Centrifu	gation				
	c) M _v	iii)	Osmomo	etry				
	d) M _z	iv)	SLS	•				
E)	a) Bulk polymerization	i)	Clay					
	b) Solution polymerization	ii)	Fastest r	ate				
	c) Suspension polymerization	iii)	Hot spot					
	d) Emuslsion polymerization	iv)	Chain tra	ansfer				
F)	a) PF synthesis	i)	1-butene					
	b) HIPS synthesis	ii)	Acrylon	itrile				
	c) LLDPE synthesis	iii)	Acetyler	ne				
	d) PVC synthesis		Phospho					
C -	lee (lee Selleevine meltleme (eee Aleese)		-		F25			
30. a)	lve the following problems (any three)			avamasa dasmaa af ma	[3×5]			
b)	For the polyesterification of $OH(CH_2)_{14}COOH$, the number average degree of polymerization, X_n is given by $(1+r)/(1+r-2rp)$, where r is the stoichiometric imbalance and p is the extent of reaction. Calculate (a) X_n for 100% polyesterification and (b) the percentage conversion of functional groups required to obtain polyester with a molecular weight of 24000 g/mol. [2.5+2.5] A polydisperse polymer consists of the following three different fractions							
U)	I	C	II	III				
	Mass of polymer (%) 30		20	50				
	Molecular weight (g/mol) 30,00		,000	1,50,000				
Calculate— i) number average molecular weight and								
	ii) Polydispersity index. [2+							
c)	We have three moles phthalic anhydride to react with three moles glycerol. Calculate—							
- /	i)average functionality and							
	ii)average degree of polymerization for 98% conversion. [1+4]							
d)	Weight average molecular weight of five different fractions of polystyrene are 50,000, 60,000, 70,000, 80,000 and 90,000. Corresponding intrinsic viscosities are 1.12, 1.28, 1.32, 1.34 and 1.38 dl/g in toluene at room temperature (27°C). Evaluate Mark-Howink constants. [5]							
Δno					[3×5]			
a)	Differentiate between addition and condensation polymerization with respect to reaction rate,							
b)	molecular weight distribution and termination. [1+2+2] Explain the differences between novolac and resol. State important uses of polycarbonate. [4+1]							
c)	What are the concepts of ceiling temperature and floor temperature in polymerization? Give example of a suitable inhibitor. [4+1]							
d)	Classify polymers according to tacticity. Explain variation in crystallinity, mechanical properties and solubility among them. [2+3]							
e)	Mention important properties of Styre	ene-Butadiene	rubbers a	nd polychloroprene rub				

3.

4.